Quantum memory is an essential element in the field of quantum information [1,2], and the optical quantum memory is expected to play an important role in photonic quantum information networks as a synchronization tool to time quantum operations properly [2,3], a quantum repeater permitting information networks as a synchronization tool to time quantum is expected to play an important role in photonic quantum long-distance quantum communication [4,5], and a tool to coherence as well as the longitudinal coherence during the storage and retrieval processes.

Recently, the spatially multimode capacity of quantum memory drew extensive interest since the increased number of optical modes can be utilized to store optical images or to perform multiplexed information processing for both classical and quantum applications [19–28]. For instance, multiple qubits can be stored in a single atomic memory as a spatial array of photonic qubits in the transverse plane, multimode quantum memory for quantum images, and continuous-variable quantum computation based on transverse spatial degrees of freedom, etc. [29,30]. Clearly, the aforementioned applications require that quantum memory preserves the transverse spatial coherence as well as the longitudinal coherence during the storage and retrieval processes. In Ref. [31], it has been shown that, via a beat-note interferometer, longitudinal phase coherence is preserved during the storage and retrieval processes in atomic vapor quantum memory. Although there are reports indirectly implying that the transverse coherence is maintained during light storage [24–26], no direct measurement on the preservation of transverse spatial coherence has been reported to date.

In this paper, we report a direct demonstration of the preservation of transverse spatial coherence of an optical pulse during the storage and retrieval processes in an EIT-based rubidium vapor quantum memory. The high-visibility Young-type spatial interference between the retrieved and the delayed pulses clearly and directly demonstrates that transverse spatial coherence of an optical pulse is preserved during the dynamic storage and retrieval processes.

Let us first describe the schematic of the experimental setup shown in Fig. 1. In short, a probe pulse is split into two at a balanced FBS—one is sent to a Rb cell for EIT storage and retrieval, and the other is sent to an optical delay line consisting of several single-mode fiber (SMF) spools. Young-type interference between the retrieved and the delayed optical pulses are then observed at the CCD.

For the dynamic storage and retrieval of the probe pulse, we make use of the Λ-type EIT scheme for 87Rb D1 lines. The strong coupling beam (vertically polarized) is prepared such that it is 60-MHz frequency upshifted to the 87Rb D1 line, $5^2S_{1/2}F = 2 \rightarrow 5^2P_{1/2}F = 2$. The weak probe beam (horizontally polarized) is then prepared by 6.8-GHz frequency upshifting a small portion of the coupling beam by using an electro-optic modulator and an etalon filter (not shown in Fig. 1) so that it is coupled to the $5^2S_{1/2}F = 1 \rightarrow 5^2P_{1/2}F = 2$ transition, completing the Λ-type EIT scheme. The probe pulse is then split at the FBS: one for the storage and retrieval and the other for the delay. At the output ports of the SMFs, QWPs and HWPs are used to fully compensate the polarization rotation in the SMFs. The polarizers are used to make the polarizations of the two beams equal. By rotating the HWP before the polarizer, it is possible to control the intensity of each beam without changing its polarization.

For the EIT storage, the probe pulse at the upper path (see Fig. 1) is spatially overlapped with the strong coupling beam at the PBS and is sent into the Rb cell (75-mm long antireflection-coated 87Rb with 10-Torr Ne buffer gas). The temperature of the Rb cell is maintained at 55 °C so that the number density is approximately $2 \times 10^{11}/cm^3$. The optical powers of the probe beam and the coupling beam at the entrance of the Rb cell were 40 μW and 7 mW, respectively. The EIT bandwidth at this condition was about 300 kHz. After interacting at the Rb cell, the vertically polarized coupling beam is filtered out by using a PBS and an additional polarizer (Pol) so that only the retrieved probe pulse reaches the CCD (JAI CM-030; 7-μm-square pixels).

The retrieved probe pulse from the EIT medium is then made to interfere with the delayed probe pulse in the Young-type two-beam interferometer, formed with a BS and a lens. Due to nonperfect retrieval of the probe pulse in the EIT-storage and retrieval process, to match the intensities of the retrieved and the delayed beams, the delayed optical pulse

DOI: 10.1103/PhysRevA.88.043824 PACS number(s): 42.50.Gy, 42.65.—k, 03.67.—a
Fiber spool

optical pulses are detected by electronically gating the CCD.

for the delay. We then make sure that only the shaded areas of this pulse-shape mismatch, the delayed pulse is first precisely timed

pulse, and this will decrease interference visibility. To account for

maintains the original pulse shape which is much longer than the retrieved

(shaded area) is retrieved from the Rb cell. The delayed pulse main-

the coupling beam is turned on again at a later time, the probe pulse

is turned off to store the probe pulse as dark-state polaritons. When

quence. Once the probe beam enters the Rb cell, the coupling beam

has the shape shown as the shaded area in Fig. 2. The delayed

storage time

μs, the coupling beam is turned back on to retrieve

the retrieved and the delayed optical pulses. (a) No storage (t_s =

0 μs), (b) storage time is t_s = 4.1 μs, and (c) storage time is

t_s = 8.3 μs. CCD images are shown at the left and, at the right,

the cross-sectional intensity distributions (corresponding to the

yellow horizontal lines on the CCD images) are shown. Solid lines

represent the theoretical double-slit interference fringes. Preservation

of transverse spatial coherence in the EIT-storage and retrieval

processes is clearly demonstrated.

FIG. 3. (Color online) Young-type spatial interference between

the retrieved and the delayed optical pulses. (a) No storage (t_s =

0 μs), (b) storage time is t_s = 4.1 μs, and (c) storage time is

t_s = 8.3 μs. CCD images are shown at the left and, at the right,

the cross-sectional intensity distributions (corresponding to the

yellow horizontal lines on the CCD images) are shown. Solid lines

represent the theoretical double-slit interference fringes. Preservation

of transverse spatial coherence in the EIT-storage and retrieval

processes is clearly demonstrated.

FIG. 1. (Color online) Experimental schematic. The probe pulse

is split into two at a fiber beam splitter (FBS) — one is sent to the EIT

medium, and the other is sent to an optical delay line. The retrieved

and the delayed probe pulses are then made to interfere at the

CCD in a Young-type two-beam interferometer formed with a lens.

QWP: quarter-wave plate, HWP: half-wave plate, Pol: polarizer, PBS:
polarizing beam splitter.

needed to be attenuated with wave plates (QWP and HWP)

and a Pol. The CCD located at the focus of the lens then

records the Young’s interference fringe.

Since the EIT-based storage using hot atomic vapor cannot

completely store (both the storage efficiency and the pulse

shape) an optical pulse due to the lack of optical depth, it is

essential to synchronize the coupling and probe beams and

the CCD gating times, see Fig. 2, to observe the Young’s

interference fringe. The probe pulse was shaped to a Gaussian

pulse of 3.1 μs at full width at half maximum by using an

acousto-optic modulator. Once the probe pulse enters the Rb

cell and gets compressed due to the EIT-slow light effect, the

coupling beam is turned off at t_off so that the probe pulse is

stored as spin excitations of the EIT medium. Then, after some

storage time t_s, the coupling beam is turned back on to retrieve

the probe pulse. Since the probe pulse is partially stored into

and retrieved from the EIT medium, the retrieved probe pulse

has the shape shown as the shaded area in Fig. 2. The delayed

pulse maintains the original pulse shape, so it is essential to

account for the pulse-shape mismatch to observe interference

between the retrieved and the delayed pulses. To match the

temporal mode, the two pulses are picked off before the lens

and are monitored with an oscilloscope. The leading edges of

the retrieved and delayed pulses are made to overlap in time by

slightly adjusting the EIT-storage time. Then, the CCD, which

is synchronized to the probe-pulse generating acousto-optic

modulator, is electronically gated to turn on only for the time

duration to fully detect the retrieved pulse. This way, we make

sure that only the shaded areas of the retrieved and delayed

probe pulses are detected, hence, maximizing the interference

visibility, see Fig. 2.

The experimental data, exhibiting the Young-type spatial

interference fringes between the retrieved and the delayed

optical pulses are shown in Fig. 3. The CCD images are

analyzed by calculating the interference visibility at the

cross-sectional intensity distribution (at the yellow horizontal

lines in Fig. 3). The fitting curves are Gaussian envelopes

multiplied by a raised sine curve, and the visibility is
...the stored and retrieved beam profile. However, the spatial coherence is well maintained as indirect evidences of which are reported in [24–26]. In our paper, we have directly shown the preservation of spatial coherence. The interference visibility V is less than unity mainly due to the fact that the detector has a rather large pixel size and the small difference in the intensities between the retrieved and delayed pulses. Note that the constant background noise from the CCD, originating from nonperfect removal of the coupling beam, has been independently measured and has been subtracted from the data for each measurement setting.

To summarize, we have reported, to the best of our knowledge, a direct experimental demonstration of the preservation of transverse spatial coherence of an optical pulse during the EIT-storage and retrieval processes in hot atomic vapor. The experimental data clearly show that not only the transverse spatial coherence is well preserved during the EIT-storage and retrieval processes, but also the transverse spatial coherence is hardly affected by the storage duration. Although our work is demonstrated with classical light pulses, our scheme, based on a hot vapor cell, can be extended to the quantum regime with optimized storage efficiency and proper narrow-band probe filtering [34,35]. We believe that this result has important implications in quantum imaging and multimode quantum information processing.

This work was supported, in part, by the National Research Foundation of Korea (Grants No. 2011-0021452 and No. 2013R1A2A1A01006029). J.-C.L. and Y.-W.C. acknowledge support from the National Junior Research Fellowship (Grants No. 2012-000741 and No. 2011-0010895, respectively). K.-K.P. acknowledges support from the Global Ph.D. Fellowship by the National Research Foundation of Korea (Grant No. 2011-0030856).

\[\text{Fig. 4. (Color online) Young-type interference visibility with different storage times. The error bars denote the statistical error of one standard deviation. The red solid line is the average visibility.} \]

\[V = \frac{I_{\text{retrieved}} - I_{\text{delayed}}}{I_{\text{retrieved}} + I_{\text{delayed}}} \]

\[\text{Visibility} \]

\[\begin{array}{c|c|c|c|c|c|c|c}
\hline
\text{Storage time (μs)} & 0 & 2 & 4 & 6 & 8 \\
\hline
\text{Visibility} & 0.80 & 0.85 & 0.90 & 0.95 & 1.00 \\
\hline
\end{array} \]

\[\text{FIG. 4. (Color online) Young-type interference visibility with different storage times. The error bars denote the statistical error of one standard deviation. The red solid line is the average visibility.} \]

\[\text{Visibility calculated from the offset and amplitude of the sinusoidal modulation [32]. The visibility of the spatial interference fringes with different storage times is shown in Fig. 4. The maximum storage time of 8.3 μs was limited by the length of the fiber spool delay line, which was about 1.6 km. The experimental data show that the interference visibility V is maintained high (>0.9) during the light storage, and they also clearly demonstrate that the EIT-storage and retrieval process preserves the transverse spatial coherence of an optical pulse. In the gaseous atomic medium, the atomic motional diffusion results in the spreading of the stored light field. Considering the image storage experiments, it is generally true that the image quality gets worse as the storage duration gets larger. Therefore, one might intuitively consider that the degree of spatial coherence is also significantly affected by the storage duration. However, generally, the diffusion of the dark-state polariton is coherence preserving [33]. The atomic motional diffusion in the light storage does give a spread in...} \]