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We report interferometric schemes to prepare arbitrary states of four-dimensional qudits �ququarts� based on
biphoton states of ultrafast-pumped frequency-nondegenerate spontaneous parametric down conversion. Prepa-
ration and tomographic characterization of a few examples of general single-ququart states, a pure state, a
mixed state �fully diagonal�, and a mixed state �partially coherent�, are experimentally demonstrated.
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I. INTRODUCTION

In quantum information, a two-dimensional quantum sys-
tem is often used as a carrier of the basic information unit,
the two-level quantum state, or the quantum bit �qubit�. Most
quantum computing and quantum communication protocols
are based on preparation, manipulation, entanglement, distri-
bution, and measurement of multiple qubits �1�.

Recently, D-level quantum states �D�2� or qudits have
attracted a lot of attention in the context of quantum commu-
nication and experimental tests of quantum mechanics �2–9�.
Experimentally, the physical carrier of the qudit can be any
D-dimensional quantum systems. Meaningful applications of
qudits in quantum information, however, will only be pos-
sible if the qudit is encoded in a D-dimensional physical
degree of freedom, which is easy to handle experimentally.
Furthermore, it should be possible to entangle multiple indi-
vidual qudits in a scalable manner.

In photonic quantum information research, any kind of
degree of freedom of photons, such as polarizations, path,
and time of arrival of a photon may be used to encode the
intended quantum state. For a qubit, the polarization state of
a photon is often the obvious choice although it is possible to
choose other degrees of freedom. To encode a qudit, it is
necessary to choose a multidimesional degree of freedom of
a single photon, such as, the angular momentum, transverse
momentum position, time of arrival, etc. �10–16�. These
single-photon multidimensional photonic degrees of free-
dom, however, are experimentally difficult to manipulate and
there are no scalable schemes to generate multiqudit en-
tangled states.

The single qudit, however, does not need to be encoded in
a single-particle quantum state. In fact, preparation and to-
mographic characterization of a pure state qutrit �three-
dimensional quantum state�, see Refs. �17–21�, and a pure
state ququart �four-dimensional quantum state�, see Refs.
�22,23�, have been demonstrated recently using the biphoton
polarization states of frequency-degenerate and frequency-
nondegenerate spontaneous parametric down conversion,

respectively. In other words, a pair of photons can be used as
a carrier of three-or four-dimensional quantum states.

Especially, the ququart based on the biphoton polarization
state of frequency-nondegenerate spontaneous parametric
down conversion �SPDC� exhibits a few properties which are
important for applications in quantum information research:
First, all the ququart basis states can be accessed using only
linear optical elements �phase plates� �22,23�. Second, it is
possible to prepare a multiququart entangled state starting
from multiple individual biphoton ququarts, linear optical el-
ements �beam splitters�, and postselection measurement
�24,25�.

To date, experimental demonstrations of the biphoton qu-
quart have been limited to pure states �22,23�. The pure qu-
quart state, however, is not enough to cover the full ranges of
possible quantum states and biphoton ququarts in mixed
states should also be considered. Furthermore, since mixed-
ness is unavoidable in reality due to the environmental deco-
herence or experimental imperfections, it is important to un-
derstand how various qudit-based quantum information
protocols are affected by mixed states and to learn how to
address these problems �26–29�. In terms of quantum state
engineering, it would be extremely useful for an experimen-
talist to have a tool which provides complete control of a
generalized quantum state of two polarization qubits �e.g.,
biphoton ququarts�. In other words, it is of interest and im-
portance to develop methods to prepare, manipulate, and
measure a general biphoton ququart state �30�. For example,
validity of quantum key distribution protocols based on qu-
dits should be analyzed if mixed states are used instead of
pure states, both in theory and in experiment �5,6,31�. This is
due to the fact that, as the dimensionality of the system
grows, e.g., quantum information processing using multipar-
ticle and multidimensional quantum states, it becomes much
easier to lose the state purity. It would thus be essential to
study the impact of the state purity loss to a quantum infor-
mation protocol if it is to be implemented in practice.

In this paper, we report experimental studies on the prepa-
ration of general states of biphoton ququarts using ultrafast-
pumped frequency-nondegenerate spontaneous parametric
down conversion. Methods for preparation and tomographic
characterization of some examples of arbitrary ququart
states, i.e., pure, mixed �fully diagonal�, and mixed �partially
coherent� states of a biphoton ququart, are experimentally
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demonstrated. We also discuss a couple of alternative experi-
mental schemes which allow one to generate arbitrary
biphoton-based ququart states.

II. BIPHOTON QUQUART

Let us start with a brief introduction to the biphoton qu-
quart. In collinear frequency-nondegenerate SPDC, a higher
energy pump photon is occasionally split into a pair of co-
propagating lower energy photons �signal-idler� of different
frequencies,

1

�p
=

1

�1
+

1

�2
, �1�

where �p is the pump wavelength and �1 ��2� is the wave-
length of the signal �idler� photon. Since each photon of the
pair can be horizontally or vertically polarized, the following
set of biphoton polarization basis states can be defined
�22–25�:

�H�1
,H�2

� � �0�, �H�1
,V�2

� � �1� ,

�V�1
,H�2

� � �2�, �V�1
,V�2

� � �3� .

The polarization state of the photon pair born in the process
of collinear frequency-nondegenerate SPDC, therefore, rep-
resents a four-dimensional quantum state or a ququart. Since
the states shown in Eq. �2� are orthonormal to each other and
form a complete basis for a four-dimensional Hilbert space,
they form the computational basis for the biphoton ququart.

Experimentally, the computational basis states for the bi-
photon ququart can be generated using type-I SPDC ��0� and
�3�� and type-II SPDC ��1� and �2��. To prepare an arbitrary
superposition state of a ququart,

��� = c0�0� + c1�1� + c2�2� + c3�3� , �2�

where cl= �cl�ei�l are the complex probability amplitudes
which satisfy �l=0

3 �cl�2=1, one would need to coherently
combine two type-I SPDC and two type-II SPDC sources
and to control four complex amplitudes cl, c2, c3, and c4. The
use of four SPDC sources, however, turns out to be unnec-
essary since the degree of polarization of the biphoton state
of collinear frequency-nondegenerate SPDC is not invariant
under SU�2� transformations �32�. It is, therefore, possible to
use linear optical elements �wave plates� to transform one
biphoton ququart basis state into any other one as recently
demonstrated in Refs. �22,23�. As a result, it is possible to
prepare an arbitrary superposition state �i.e., pure state�
shown in Eq. �2� using less than four SPDC sources and we
discuss several such schemes in this paper.

The superposition state shown in Eq. �2�, however, is not
the most general quantum state for a ququart. To properly
consider mixedness, which comes from controlled or uncon-
trolled quantum distinguishability among the basis states
shown in Eq. �2�, the ququart state should be expressed as a
4�4 density matrix � to describe general single-ququart
states: mixed �fully diagonal� state, mixed �partially coher-
ent� state, and the pure state shown in Eq. �2�. Here, the
mixed state �fully diagonal� is the ququart state described by

a diagonal matrix and there is no constructive or destructive
interference among different ququart amplitudes. The mixed
state �partially coherent�, however, exhibits some coherence
among the four ququart basis states and its density matrix
has nonzero off-diagonal terms.

It is interesting to note that, since the ququart state under
consideration is, in fact, formed with two polarization qubits,
it is possible to apply the state classification method based on
two-qubit entanglement of formation. This method is based
on the quantity C concurrence, which is a measure of two-
qubit entanglement �33�. For the single biphoton ququart
�i.e., biphoton two-qubit state� in Eq. �2�, it is easy to show
that there is no two-qubit entanglement �C=0, i.e., the two-
qubit state is separable� if the amplitudes satisfy the relation
c0c3=c1c2. Otherwise, the state is an entangled two-qubit
state with concurrence C=2�c0c3−c1c2��0. �The two-qubit
state is nonmaximally entangled if 0�C�1.�

III. QUQUART PREPARATION

In order to prepare a general single-ququart state, includ-
ing pure, mixed �fully diagonal�, and mixed �partially coher-
ent� states, it is necessary to introduce quantum distinguish-
ability among the biphoton ququart basis states defined in
Eq. �2� in a controllable manner. Moreover, to establish a
confidence bound and to find a reliable method of preparing
an intended ququart state, it is required to compare the ex-
perimentally reconstructed and the theoretically expected qu-
quart density matrices. Our experiment, therefore, deals with
both the ququart preparation as well as the experimental re-
construction of the ququart density matrices using the quan-
tum state tomography.

The schematic of the experimental setup is shown in Fig.
1. In the single-crystal scheme, a type-I BBO crystal, with its
optic axis horizontally oriented, is pumped by a train of ul-
trafast pulses and this scheme is used for preparing pure state
ququarts. For preparing mixed �fully diagonal� and mixed
�partially coherent� states, we used the double-crystal scheme
in which two orthogonally oriented type-I BBO crystals are
placed in tandem �34�. Note that while the double-crystal
scheme in Refs. �22,23� is limited to the generation of the
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FIG. 1. �Color online� Schematic of the experiment. Ququart
preparation: The collinear frequency-nondegenerate biphoton polar-
ization state is transformed by the WP to prepare an arbitrary four-
dimensional quantum state, a biphoton ququart. The theoretically
expected quantum state of the ququart, �theory, can be calculated by
using the information on the experimental settings. Ququart tomog-
raphy: The biphoton ququart is tomographically characterized to
obtain the experimentally reconstructed density matrix �exp. See the
text for details.
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pure ququart state, the present ququart preparation scheme
based on ultrafast pumped SPDC can be extended to the
generation of a mixed ququart state. The pump laser had
roughly 100 fs pulse width and centered at 390 nm. The po-
larization of the pump was controlled by using a half-wave
plate �pump HWP�. The BBO crystals used in this experi-
ment are 3 mm thick. The SPDC signal-idler photon pair
generated at the crystals propagates collinearly with the
pump and has different frequencies: the signal photon is cen-
tered at 823.5 nm ��1� and the idler photon is centered at
740.8 nm ��2� �35�.

In the single-crystal scheme, the biphoton polarization
state generated at the crystal is �V�1

,V�2
�, which corresponds

to the ququart basis state �3� in Eq. �2�. This basis state is
then unitarily transformed into a superposition state shown in
Eq. �2� to prepare an arbitrary pure state by using a zero-
order wave plate �WP�. This is due to the fact that the signal
and the idler photons, even though they have the same po-
larization, acquire different phase shift due to the large dif-
ference in the wavelength. As a result, the polarization states
of the signal and the idler photons evolve differently, but
predictably, for a specific angle of WP: �V�1

�→	�H�1
�

+
�V�1
� and �V�2

�→��H�2
�+��V�2

�, with �	�2+ �
�2=1 and
���2+ ���2=1. The final result is the transformation of the ini-
tial ququart basis state into a superposition state in Eq. �2�,
which is a pure state. The theoretically expected density ma-
trix �theory for the prepared ququart state, which can be cal-
culated accurately as the settings of WP is in our control, is
then compared to the experimentally reconstructed density
matrix �exp.

The single-crystal scheme, therefore, allows us to prepare
one of the four single-ququart basis states in Eq. �2� initially.
For the case just described, the single-ququart basis state �3�
is, in fact, �V�1

,V�2
�, which is a factorizable two-qubit state

with C=0. Note now that the degree of entanglement �in this
case, between the two polarization qubits� cannot be in-
creased or decreased by local unitary transformations. The
unitary transformation due to WP can turn the initial ququart
state �3� into a superposition state in the form of Eq. �2�.
However, the resulting state can always be expressed as a
separable two-qubit state of the form �A�1

,B�2
�, where �A�1

�
and �B�2

� represent arbitrary polarization states of signal and
idler photons, respectively.

For preparation of mixed �fully diagonal� and mixed �par-
tially coherent� states, the double-crystal scheme described
earlier is used. Since the two BBO crystals are orthogonally
oriented, it is possible to excite two of the ququart basis
states shown in Eq. �2�: �0� ��H�1

,H�2
�� and �3� ��V�1

,V�2
��.

The relative amplitudes between the two can be controlled
by changing the pump polarization.

To prepare a mixed �fully diagonal� state of �0� and �3�, no
further actions are required as the two amplitudes are already
distinguishable in time due to the clock effect of the pump
pulse �34�. The resulting density matrix is, therefore,

�theory = 	1 −
x

2

�0��0� +

x

2
�3��3� , �3�

where the parameter x can be varied by changing the polar-
ization of the pump. Adding two additional type-II BBO

crystals, which are orthogonally oriented, will allow us to
easily prepare a mixture of all four ququart basis states. This,
however, is not necessary in principle since it is possible to
transform a single basis state into a superposition of all basis
states and then to introduce birefringent or dichroic decoher-
ence among the amplitudes.

A more general state, between the mixed �fully diagonal�
and the pure states, would exhibit some coherence among the
four ququart basis states in Eq. �2�. In other words, the qu-
quart density matrix has nonzero off-diagonal elements. Such
states can be prepared by unitarily transforming the mixed
�fully diagonal� state in Eq. �3� using WP. As previously
discussed, a ququart basis state can be transformed into a
superposition of all basis states linear optically using WP
�32�. By subjecting the mixed �fully diagonal� state in Eq. �3�
to unitary transformation using WP, it is possible to obtain
the following mixed �partially coherent� state,

�theory = p1��1���1� + p2��2���2� , �4�

where p1+ p2=1 and ���1, for example, is in the form of Eq.
�2�. It is important to note that this unitary transformation
process, however, does not actually decrease entropy of the
ququart state as we shall show in the next section. To de-
crease the entropy, it is necessary to erase the temporal dis-
tinguishability of the biphoton amplitudes born in the first
and the second crystals, for example, by inserting a piece of
thick compensating quartz crystal in the pump beam or in the
path of the photon pair �34�. Introduction of controllable bi-
refringent or dichroic decoherence will transform Eq. �4� into
a more complex ququart state with increased entropy.

From the two-qubit perspective, linear optical state trans-
formation from Eq. �3� to Eq. �4� represents no increase in
the degree of two-qubit entanglement as both states exhibit
the two-qubit concurrence C=0. This is closely related to the
fact that the ququart state entropy remains the same for states
in Eqs. �3� and �4�. To be more specific, the two-qubit con-
currence C will increase if the single-ququart entropy is de-
creased by erasing the temporal distinguishing information
present in Eq. �3� or in Eq. �4�. Complete erasure of the
temporal distinguishability between the biphoton amplitudes
from the first ��H�1

,H�2
�� and the second ��V�1

,V�2
�� type-I

BBO crystal �see Fig. 1�, will result in a pure ququart state
with the two-qubit concurrence C=1.

In this paper, we have experimentally demonstrated a
pure, a mixed �fully diagonal�, and a mixed �partially coher-
ent� biphoton ququart state, which is shown in Eq. �2�, Eq.
�3� and Eq. �4�, respectively. For the mixed �fully diagonal�
and mixed �partially coherent� states, the state entropy can be
controlled by inserting a proper compensating crystal before
or after the BBO crystals.

IV. QUQUART TOMOGRAPHY

The prepared ququart state is characterized experimen-
tally by performing quantum state tomography, a statistical
method of reconstructing the quantum state density matrix
based on a set of polarization projection measurements
�36,37�.

The experimental schematic for the ququart state tomog-
raphy is shown in Fig. 1. First, the photon pair that forms the
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biphoton ququart is split into two spatial modes by using a
dichroic beam splitter �DBS�, which transmits �1
=823.5 nm and reflects �2=740.8 nm. Each photon, then,
undergoes a polarization state transformation with the use of
a quarter-wave plate �QWP� and a half-wave plate �HWP�.
Finally, the polarization state projection is applied to each
photon by using a polarizer �POL� after which the photon is
detected at the detector package, which consists of a spectral
filter and a multimode fiber coupled single-photon counting
module �SPCM�. Since the ququart is made of a pair of pho-
tons, the ququart detection is based on the coincidence
counting rates of the two SPCM’s that detect �1 and �2 pho-
tons with definite polarizations. The coincidence window
used in this experiment was 5 ns.

As noted in Ref. �22�, the ququart based on the collinear
frequency-nondegenerate SPDC photon pair is mathemati-
cally equivalent to the noncollinear frequency-degenerate
SPDC photon pair which is often used in quantum informa-
tion research. It is thus possible to apply the two-qubit quan-
tum tomography method described in Ref. �36� directly in
this experiment to reconstruct the single-ququart density ma-
trix. Sixteen particular joint biphoton polarization state mea-
surements are, therefore, necessary to reconstruct a single-
ququart density matrix for the identically prepared ensemble
of biphoton ququarts. Table I shows experimental settings of
WP to perform the sixteen polarization projection measure-
ments. The set of sixteen coincidence measurement out-
comes n
 allow the linear tomographic reconstruction of the
single-ququart density matrix. It is, however, possible that
the mathematically reconstructed density matrix by the linear
tomographic reconstruction might violate the physical prop-
erties of a density matrix. To avoid this problem, the maxi-
mum likelihood method was applied as follows �36�. First,
we generate a physical density matrix which satisfies nor-
malization, hermiticity, and positivity, as a function of six-
teen variables. We then introduce the “likelihood function�
which quantifies how good physical density matrix is in re-
lation to the experimental data. Finally, using standard nu-
merical optimization techniques, we obtain the best estimate
of the density matrix by maximizing the likelihood function.
The single-ququart density matrix initially reconstructed by
the linear tomography is used as the seed for the iteration
algorithm.

The experimentally reconstructed ququart density matrix
�exp is then compared to the theoretically expected density
matrix �theory, which is calculated from the known values
of the pump polarization and WP settings. The fidelity F
= �Tr���theory�exp

��theory�2 is then calculated to see how
closely the two overlap and the state purity is analyzed by

calculating the state entropy defined as S=−�k=1
4 �k log4 �k,

where �k are the eigenvalues of the density matrix �. Note
that, to satisfy the normalization condition of the ququart
density matrix, the base of the logarithm in the definition of
S should be 4 compared with 2 of the qubit.

A. Pure state ququart

To prepare a pure state ququart as in Eq. �2�, we used a
single type-I BBO crystal generating the initial ququart state
�3�, which in fact is a factorizable two-qubit state �V�1

,V�2
�.

This state is then transformed into a superposition state with
the help of WP shown in Fig. 1. In this experiment, a zero-
order half-wave plate designed at 823.5 nm was used in
place of WP. As a demonstration of pure state ququart prepa-
ration, we set the fast axis of the half-wave plate at 30° from
the vertical axis. Since local unitary transformations do not
change the degree of entanglement, the final states belong to
the factorizable subset of two-qubit �ququart� states with C
=0.

The theoretically expected ququart density matrix in this
case is calculated to be

�theory
pure =


0.5432 0.3136 + 0.1182i 0.3136 0.1811 + 0.0683i

0.3136 − 0.1182i 0.2068 0.1811 − 0.0683i 0.1194

0.3136 0.1811 + 0.0683i 0.1811 0.1045 + 0.0394i

0.1811 − 0.0683i 0.1194 0.1045 − 0.0394i 0.0689
� . �5�

TABLE I. QWP and HWP �fast axis� settings for ququart
tomography. POL in Fig. 1 transmits vertical polarization. Here,
�D�= ��H�+ �V�� /�2, �A�= ��H�− �V�� /�2, �D�= ��H�+ �V�� /�2, and
�R�= ��H�+ i�V�� /�2.


 HWP1 QWP1 HWP2 QWP2 Basis 1 Basis 2

1 45° 0 45° 0 �H� �H�
2 45° 0 0 0 �H� �V�
3 0 0 0 0 �V� �V�
4 0 0 45° 0 �V� �H�
5 22.5° 0 45° 0 �R� �H�
6 22.5° 0 0 0 �R� �V�
7 22.5° 45° 0 0 �D� �V�
8 22.5° 45° 45° 0 �D� �H�
9 22.5° 45° 22.5° 0 �D� �R�
10 22.5° 45° 22.5° 45° �D� �D�
11 22.5° 0 22.5° 45° �R� �D�
12 45° 0 22.5° 45° �H� �D�
13 0 0 22.5° 45° �V� �D�
14 0 0 22.5° 90° �V� �L�
15 45° 0 22.5° 90° �H� �L�
16 22.5° 0 22.5° 90° �R� �L�
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For this state, it is easy to see that Tr��2�=1. The entropy of
the theoretical density matrix �theory

pure is calculated to be S=0,
as it should for a pure state.

To obtain the ququart density matrix, we have performed
the sixteen projection measurement described in Table I.
The coincidence data �for the accumulation time of 180 s�
are n1=6118, n2=1858, n3=917, n4=2943, n5=1565, n6
=477, n7=2362, n8=7549, n9=2395, n10=8254, n11=1664,

n12=6653, n13=3078, n14=2739, n15=5817, and n16=1398.
The accidental coincidences, which appear at the same pe-
riod as the pump pulse period, have been subtracted. In this
paper, all the coincidence measurement data show accidental
subtracted values.

Applying the single-ququart tomography algorithm, the
experimentally reconstructed ququart density matrix is ob-
tained to be

�exp
pure =


0.5138 0.2749 + 0.0523i 0.3236 + 0.1308i 0.1643 + 0.1026i

0.2749 − 0.0523i 0.1590 0.1887 + 0.0418i 0.1004 + 0.0379i

0.3236 − 0.1308i 0.1887 − 0.0418i 0.2463 0.1259 + 0.0224i

0.1643 − 0.1026i 0.1004 − 0.0379i 0.1259 − 0.0224i 0.0777
� . �6�

We obtain Tr��exp
2 �=0.962, which means that the experimentally reconstructed state is not an entirely pure state. The entropy

of the experimentally reconstructed density matrix is found to be S=0.055�0.018.
Clearly, the experimentally prepared ququart state is somewhat different from what we initially intended to prepare and this

is reflected in the state fidelity F=0.938�0.019. Figure 2 shows the graphical representations of the real parts of the
experimental and theoretical ququart density matrices for this experiment.

The errors in the experimentally reconstructed density matrix can be estimated as follows. Assuming that the measured
coincidences n
 follow Poissonian statistics, i.e., the uncertainty in the count rate �n
=�n
, the error in the reconstructed
density matrix is calculated to be

��exp
pure =


0.0066 0.0042 − 0.0034i 0.0069 + 0.0023i 0.0083 + 0.0028i

0.0042 + 0.0034i 0.0036 0.0056 − 0.0035i 0.0039 + 0.0013i

0.0069 − 0.0023i 0.0056 + 0.0035i 0.0046 0.0029 − 0.0024i

0.0083 − 0.0028i 0.0039 − 0.0013i 0.0029 + 0.0024i 0.0026
� . �7�

B. Mixed state ququart: Fully diagonal

The double-crystal scheme shown in Fig. 1 is used to
prepare a ququart in a mixed �fully diagonal� state. To study
different degrees of mixedness for a biphoton ququart, we
studied two cases: the ququart prepared with the pump po-
larization of 30° and of 45° from the horizontal plane.

Let us first discuss the case of 30° pump polarization. In
this case, the horizontally oriented type-I BBO is pumped
more strongly than the vertically oriented type-I BBO. This

setting, therefore, produces an unequal mixture of the qu-
quart basis states �3� and �0�.

The theoretical ququart density matrix for this case, as in
Eq. �3�, takes a very simple form,

�theory
mix =


0.2500 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0.7500
� . �8�
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FIG. 2. �Color online� Real
part of the experimentally recon-
structed ��exp� and the theoreti-
cally expected ��theory� density
matrices for a pure state ququart.
The calculated fidelity is F
=0.938�0.019.
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The theoretical density matrix is clearly not pure since
Tr��theory

2 �=0.625 and S=0.406.
For this state, the tomographic coincidence measurement

resulted �for 180 s� in n1=1911, n2=46, n3=6287, n4=34,
n5=795, n6=3562, n7=3005, n8=1048, n9=1911,

n10=2061, n11=2321, n12=981, n13=3141, n14=3154, n15
=973, and n16=2220.

The experimentally reconstructed ququart density
matrix is, compared with the theoretical one, a bit more
complex,

�exp
mix =


0.2300 0.0024 + 0.0009i 0.0211 − 0.0007i − 0.0015 + 0.0020i

0.0024 − 0.0009i 0.0057 − 0.0006 + 0.0017i − 0.0572 − 0.0019i

0.0211 + 0.0007i − 0.0006 − 0.0017i 0.0041 0.0069 + 0.0018i

− 0.0015 − 0.0020i − 0.0572 + 0.0019i 0.0069 − 0.0018i 0.7571
� . �9�

We obtain Tr��exp
2 �=0.634 and S=0.405�0.022 for the experimentally reconstructed ququart density matrix. The fidelity is

calculated to be F=0.987�0.015 and Fig. 3�a� shows the graphical representation of the real part of the experimentally
reconstructed mixed �fully diagonal� state ququart shown in Eq. �9�.

The experimentally reconstructed density matrix has the following inherent errors due to the fluctuations of the coincidence
count rate.

��exp
mix =


0.0053 0.0027 − 0.0027i 0.0030 + 0.0023i 0.0071 + 0.0044i

0.0027 + 0.0027i 0.0008 0.0044 − 0.0070i 0.0044 + 0.0053i

0.0030 − 0.0023i 0.0044 + 0.0070i 0.0007 0.0048 − 0.0048i

0.0071 − 0.0044i 0.0044 − 0.0053i 0.0048 + 0.0048i 0.0096
� . �10�

Let us now discuss the case in which the pump polariza-
tion is 45°. In this case, the two ququart basis states �3� and
�0� are equally excited. Therefore, the theoretical ququart
density matrix is given as

�theory
mix =


0.5000 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0.5000
� . �11�

The theoretical ququart density matrix results in Tr��theory
2 �

=0.5 and S=0.5. Note that for a complete mixture of all four
ququart basis states, Tr��2�=1 /4 and S=1.

For the equal mixture of �3� and �0�, the tomographic co-
incidence measurement outcomes are �for 180 s� n1=3442,
n2=30, n3=3983, n4=23, n5=1621, n6=2358, n7=1950, n8

=1895, n9=1906, n10=1973, n11=1959, n12=1840, n13

=2040, n14=2026, n15=1809, and n16=1909.
The experimentally reconstructed ququart density matrix

for this case is found to be

Re[ ]expρ

1
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3
2 0

3
2

1
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0.50

0.75

1.00

1
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3
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1

Re[ ]expρ

0.25

0.50

0.75

1.00

(a) (b)
FIG. 3. �Color online� Real

parts of two mixed �fully diago-
nal� state ququarts with different
entropy values. These states are
generated using the double-crystal
scheme shown in Fig. 1 with dif-
ferent pump polarization. �a� For
the state shown in Eq. �9�.
S��exp�=0.405�0.022. �b� For the
state shown in Eq. �12�. S��exp�
=0.510�0.016.
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�exp
mix =


0.4584 0.0142 + 0.0048i 0.0253 + 0.0162i 0.0158 − 0.0097i

0.0142 − 0.0048i 0.0041 0.0012 + 0.0004i − 0.0406 + 0.0118i

0.0253 − 0.0162i 0.0012 − 0.0004i 0.0031 0.0024 + 0.0029i

0.0158 + 0.0097i − 0.0406 − 0.0118i 0.0024 − 0.0029i 0.5313
� . �12�

The experimentally reconstructed ququart density matrix is characterized by Tr��exp
2 �=0.499 and S=0.510�0.016. The fidelity

is calculated to be F=0.989�0.016 and Fig. 3�b� shows the graphical representation of the real part of the experimentally
reconstructed mixed �fully diagonal� state ququart shown in Eq. �12�.

The error in the experimentally reconstructed density matrix, due to the count fluctuations, is found to be

��exp
mix =


0.0078 0.0040 − 0.0039i 0.0043 + 0.0036i 0.0075 + 0.0047i

0.0040 + 0.0039i 0.0007 0.0047 − 0.0074i 0.0038 + 0.0047i

0.0043 − 0.0036i 0.0047 + 0.0074i 0.0006 0.0042 − 0.0042i

0.0075 − 0.0047i 0.0038 − 0.0047i 0.0042 + 0.0042i 0.0084
� . �13�

C. Mixed state ququart: Partially coherent

A more general state of a ququart, as in Eq. �4�, can be prepared by transforming an initial mixed �fully diagonal� state of
the form shown in Eq. �3�. The same double-crystal scheme was used for generating the SPDC photon pair and, in this
experiment, the pump polarization was 45°. A zero-order half-wave plate designed at 823.5 nm was used at the fast-axis angle
of 22.5° from the vertical axis.

The ququart density matrix calculated for this setting is

�theory
int =


0.2500 0 − 0.0086 0.2414 + 0.0644i

0 0.2500 0.2414 − 0.0644i 0.0086

− 0.0086 0.2414 + 0.0644i 0.2500 0

0.2414 − 0.0644i 0.0086 0 0.2500
� . �14�

The above theoretical ququart density matrix results in Tr��theory
2 �=0.5 and S=0.5, which are equal to the values for the mixed

�fully diagonal� state in Eq. �11�. This means that, even though the ququart state has been unitarily transformed to a new one
with the help of a wave plate, the entropy of the system has not been changed. To actually reduce the entropy of the system,
it is necessary to remove the temporal distinguishability between the amplitudes �0� and �3�, which is introduced due to ultrafast
pumping of the BBO crystals �34�. This can be accomplished, for example, by inserting a properly oriented quartz plate of the
exact thickness in the path of the pump laser.

For the mixed �partially coherent� biphoton ququart state, the projection measurement resulted in the following coincidence
counts �for 180 s�: n1=1760, n2=1730, n3=1733, n4=1839, n5=1687, n6=1630, n7=1758, n8=1961, n9=817, n10=3029,
n11=1008, n12=1701, n13=1940, n14=1944, n15=1692, and n16=1192.

The experimentally reconstructed density matrix is found to be

�exp
int =


0.2493 − 0.0077 − 0.0007i 0.0234 + 0.0126i 0.1793 + 0.1665i

− 0.0077 + 0.0007i 0.2433 0.2032 + 0.1184i 0.0142 − 0.0036i

0.0234 − 0.0126i 0.2032 − 0.1184i 0.2590 0.0333 − 0.0019i

0.1793 − 0.1665i 0.0142 + 0.0036i 0.0333 + 0.0019i 0.2542
� , �15�

which shows Tr��exp
2 �=0.483 and S=0.550�0.003.

The inherent fluctuations of the count rate introduce the following error in the reconstructed density matrix:

��exp
int =


0.0059 0.0042 − 0.0042i 0.0046 + 0.0039i 0.0098 + 0.0036i

0.0042 + 0.0042i 0.0059 0.0065 − 0.0054i 0.0043 + 0.0040i

0.0046 − 0.0039i 0.0065 + 0.0054i 0.0061 0.0042 − 0.0042i

0.0098 − 0.0036i 0.0043 − 0.0040i 0.0042 + 0.0042i 0.0059
� . �16�
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Figure 4 shows the real parts of the experimentally recon-
structed and the theoretical density matrices. The calculated
fidelity is somewhat low F=0.878�0.029 in this case.

V. DISCUSSION

The fidelity F quantifies how close the experimentally
prepared ququart state is to the one we intended to prepare,
i.e., F quantifies the overlap between the theoretical density
matrix and the experimentally reconstructed density matrix.
In Sec. IV, we have analyzed errors introduced to the experi-
mentally reconstructed density matrices due to the fluctua-
tions of the count rates. As we have seen in Eqs. �7�, �10�,
�13�, and �16�, however, these fluctuations contribute very
small errors to the reconstructed density matrices.

There are a number of external experimental factors
which could strongly affect the fidelity: First, errors in the
angular settings of the wave plates and polarizers used for
the projection measurement. Significant improvement is pos-
sible by moving from hand-operated optic holders that are
graduated in a 1°–2° increment to motorized holders. Sec-
ond, less-than-ideal spatial mode matching for the photon
pairs coming from the two different crystals. Mode matching
can be implemented by adding a spatial filter or a short piece
of single-mode fiber and this should improve the fidelity sub-
stantially. Third, inaccurate transformation matrices of the
DBS. For the ququart tomography discussed in the previous
section, accurate experimental reconstruction of the ququart
density matrix requires the full knowledge of the polarization
state change induced by all optical elements. In our experi-
ment, the custom-made DBS exhibited unexpected
polarization-changing behaviors. It was found that the polar-
ization states were changed both for the transmitted and the
reflected beams. To account for the DBS behaviors, we car-
ried out the Stokes parameter measurements for the transmit-
ted and the reflected beams for six different input polariza-
tion states ��H�, �V�, �45°�, �135°�, �R�, and �L��. From these
measurements, it was possible to deduce the 2�2 DBS
transformation matrices for the transmitted and the reflected
modes. The experimental ququart density matrices shown in
the previous section were reconstructed using the DBS ma-
trices and therefore experimental errors introduced to the
DBS matrices should have slightly affected the fidelity.

In our experiment, the preparation of general states of a
ququart was demonstrated using the double-crystal scheme.

This scheme, although easy to set up, has potential difficul-
ties in complete control of the ququart states. For example,
independent decoherence control for amplitudes �1�
��H�1

,V�2
�� and �2� ��V�1

,H�2
�� using a birefringent medium

is difficult as both amplitudes contain horizontal and vertical
polarization components.

For complete control of the ququart state, i.e., to prepare a
ququart state with arbitrary values of Tr��2� and S, we can
envision a four-crystal scheme in which a SPDC source is
placed in each arm of a four-path Mach-Zehnder interferom-
eter as shown in Fig. 5. This scheme requires four crystals
�two type-I SPDC sources and two type-II SPDC sources�
and the four-path interferometer must be made stable for
accurate phase control. Decoherence control can be accom-
plished by controlling the effective beam paths of the inter-
ferometer arms using the tunable delays installed at each of
the beam paths. �Note that arbitrary pure ququart states can
be prepared using just two crystals �see Refs. �22,23��.�

It is, however, possible to design experimental schemes,
for preparing arbitrary �mixed: fully diagonal, mixed: par-
tially coherent, and pure� ququart states, which are less com-
plicated than the four-path interferometric scheme shown in
Fig. 5. In the following, we discuss two such experimental
schemes, each of which are suited for particular ququart
states in need.

A. Scheme based on the Mach-Zehnder interferometer

The basic idea for the new ququart preparation scheme is
based on the observation that the pure ququart state in Eq.
�2� can be rewritten as

1
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3
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3
2

1

Re[ ]expρ Re[ ]ρ theory

1
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3
2 0

3
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1

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00 FIG. 4. �Color online� A qu-
quart with a mixed �partially co-
herent� state between a pure state
and a mixed �fully diagonal� state.
The calculated fidelity is F
=0.878�0.029. We obtain
Tr��exp

2 �=0.483 and S��exp�
=0.550�0.003.

ρtheory

Pump
Pulse

HWP BBO Delay

FIG. 5. �Color online� Scheme for preparing a general biphoton
ququart. Pump HWP is used to control the relative magnitude of the
SPDC amplitudes generated at the BBO. Four BBO �two type-I and
two type-II� crystals are needed for this scheme.
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��� = c0�H�1
,H�2

� + c1�H�1
,V�2

� + c2�V�1
,H�2

� + c3�V�1
,V�2

�

= �c0��H�1
,H�2

� + �c3�ei�03�V�1
,V�2

� + ��c1��H�1
,V�2

�

+ �c2�ei�12�V�1
,H�2

��ei�01, �17�

where �ij�i , j=0,1 ,2 ,3� is the relative phase for the i and j
ququart basis states. Here, we have put together the two qu-
quart amplitudes that can be prepared with type-I SPDC �the
first two terms� and the other two ququart amplitudes that
can be prepared with type-II SPDC �the last two terms�.

Experimentally, the first two terms in Eq. �17� can be
prepared with two orthogonally oriented type-I BBO crystals
placed in tandem as in Fig. 1. Note that while the double-
crystal scheme in Refs. �20,21� is limited to the generation of
the pure ququart state, our ququart preparation scheme based
on ultrafast pumped SPDC can be extended to the generation
of a mixed ququart state. The second two terms can then be
prepared with two similarly placed type-II BBO crystals.
Therefore, coherently or incoherently combining these two
experimental schemes will allow us to prepare an arbitrary
ququart state.

The experimental scheme realizing this idea is shown in
Fig. 6. A Glan-Tompson prism �GP�, transmitting the hori-
zontally polarized component of the uv pump and reflecting
the vertically polarized component, serves as the input beam
splitter for the Mach-Zehnder interferometer. The reflected
pump laser, after passing the birefringent compensator
�Comp.� and a half-wave plate �HWP2�, pumps a set of two
orthogonally oriented type-I BBO crystals. A quartz plate
�QP1� compensates the group velocity delay between the or-
dinary and the extraordinary polarized photons emitted from
the pair of BBO crystals. The residual pump laser is removed
by a uv mirror �UVM� and two quartz plates QP2 can be
tilted along their optical axes to introduce a phase shift ��03�
between horizontally and vertically polarized type-I bipho-
tons �34�. The dichroic mirror �DM� is designed to transmit
the biphoton wavelengths but to reflect the uv pump beam
which comes from the upper path of the Mach-Zehnder in-
terferometer.

The uv pump beam in the upper path of the Mach-
Zehnder interferometer goes through a birefringent compen-
sator, phase plates �QP3� for adjusting the phase ��12� be-
tween horizontal and vertical components of the pump beam,
and a piezoelectric translator �PZT� which introduces a rela-
tive phase shift ��01� between the upper and the lower paths
of the interferometer. The uv pump from the upper path,

upon reflection at the DM, serves as the pump for the set of
two orthogonally oriented type-II BBO crystals. The group
velocity delay between biphoton amplitudes from the first
and the second type-II BBO crystals are then compensated
by the crystal compensator �QP4�.

At the output of the experimental setup shown in Fig. 6,
an arbitrary ququart state based on the biphoton polarization
states of frequency-nondegenerate SPDC is prepared. We
note that the scheme is loosely based on the biphoton qutrit
setup demonstrated in Ref. �18�, where three SPDC crystals
are exploited for the generation of frequency-degenerate col-
linear biphotons.

B. Scheme based on the frequency nondegenerate
and noncollinear regime of SPDC

The interferometric scheme proposed in the previous sec-
tion, although straightforward, might not be practical as the
scheme inherits high phase sensitivity of the Mach-Zehnder
interferometer, which is not desirable for the purpose of pre-
paring ququarts. Is it then possible to prepare an arbitrary
ququart state using a less complicated experimental scheme?
The answer to this question is found to be positive, at least
for the pure ququart states by using the biphoton polarization
entangled states with controllable two-qubit concurrence C.

Let us first discuss the problem in a rather abstract form.
In some arbitrary chosen four-dimensional computational ba-
sis, an arbitrary pure ququart state can be written as Eq. �2�.
Since the biphoton ququart is, in fact, formed with two po-
larization qubits as defined in Eq. �2�, we can make use of
the fact that a unique set of orthonormal states of the two
subsystems �two polarization qubits� �Ai� and �Bi� �i=1,2�
exists such that the biphoton pure state in Eq. �2� can be
expressed in the form

��� = ��1�A1��A2� + ��2�B1��B2� . �18�

This is known as the Schmidt decomposition. The Schmidt
coefficients �i are eigenvalues of the reduced density matri-
ces of the subsystems. If a biphoton ququart state can be
decomposed in this way �although the Schmidt coefficients
and the Schmidt basis states may be different�, one should be
able to prepare an arbitrary pure ququart state, provided that
the Schmidt coefficients and the Schmidt basis are experi-
mentally controllable. The control of the Schmidt coeffi-
cients requires nonlocal unitary transformations which affect
both subsystems but it is possible to use only local opera-
tions to switch between the Schmidt basis. For biphoton qu-
quarts we discuss in this paper, these operations turn out to
be rather simple as the subsystems are polarization qubits.

The proposed setup to implement this idea is shown in
Fig. 7. A set of two orthogonally oriented type-I BBO crys-
tals, cut for frequency-nondegenerate noncollinear type-I
SPDC, are pumped by a uv laser whose polarization is con-
trolled by a HWP. A set of quartz plates �QP� introduces the
relative phase between the horizontal and the vertical com-
ponents of the uv pump. The initial polarization state of the
biphoton generated in this process can be written as

ρtheory

HWP1 GP

HWP2

Type-I

BBO QP1

QP3

UVM
Type-II

BBO QP4 UVMQP2

DM

PZT
Comp.

Comp.

HWP3

FIG. 6. �Color online� Proposed setup for arbitrary ququart
preparation. This scheme reduces the four-path interferometer
shown in Fig. 5 to a Mach-Zehnder interferometer, making the ex-
perimental implementation much easier. QP2, QP3, and PZT adjust
the phase terms in Eq. �17�, �03, �12, and �01, respectively.
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��� = ��1�H�1
��H�2

� + ��2�V�1
��V�2

� , �19�

where the relative magnitude of the coefficients is controlled
by WP and the relative phase is controlled by tilting QP. For
this biphoton state, the state of the individual subsystem �qu-
bit� is then given as

�i = �1�Hi��Hi� + �2�Vi��Vi� , �20�

where the subsystem index i=1,2.
So far we have produced a state with a given set of

Schmidt coefficients �i.e., a given concurrence�, but in a
fixed �H-V� basis. The use of a QWP and a HWP on each of
the photons then locally and unitarily transforms the polar-
ization states of the individual photon. Since the unitary
transformation conserves the inner product, there always ex-
ists a state orthogonal to a given one in the two-dimensional

Hilbert space. In other words, in Eq. �20�, if �Hi�→
Ui

�Ai�, then

�Vi�→
Ui

�Bi� with �Ai �Bi�=0. As a result, the state Eq. �19� be-
comes

��� →
U1�U2��1�A1��A2� + ��2�B1��B2� , �21�

where U1, for example, refers to the unitary polarization
transformation for photon 1. Equation �21� represents a gen-
eral form of a pure biphoton polarization state or a pure
biphoton ququart state.

The scheme shown in Fig. 7 is interferometrically more
stable than the one in Fig. 6 due to the fact that the photon
pair from each type-I BBO crystal goes through the same
optical paths. In principle, to prepare the state in Eq. �21�, the
two paths in Fig. 7 should only be equal up to the coherence
length of the pump laser. If the pump is broadband, however,
it becomes necessary to further erase the temporal distin-
guishability between amplitudes from the first and the sec-
ond BBO crystals, for example, by using a set of compen-
sating crystals �34�.

VI. CONCLUSION

We have demonstrated that an arbitrary general single-
ququart state can be prepared in a simple and controllable
way by using the biphoton polarization state of ultrafast-
pumped collinear frequency-nondegenerate SPDC. In addi-
tion, we have proposed two additional schemes which can be
applied for arbitrary �pure and mixed� ququart state prepara-
tion.

Compared to other multidimensional quantum systems,
the biphoton ququart is easier to prepare and characterize and
states other than pure states can be prepared easily. Further-
more, it is possible to prepare a multiququart entangled state
linear optically �24,25�. We, therefore, believe that the gen-
eral ququart state preparation scheme analyzed in this paper
will find applications in quantum key distribution and quan-
tum information processing.
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