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We report a quantum random number generator based on the photon-number–path entangled state
that is prepared by means of two-photon quantum interference at a beam splitter. The randomness
in our scheme is truly quantum mechanical in origin since it results from the projection measurement
of the entangled two-photon state. The generated bit sequences satisfy the standard randomness
test. © 2009 Optical Society of America
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1. Introduction

The need to generate random numbers arises in
many scientific and engineering disciplines. For ex-
ample, in quantum cryptography, the initial choices
of the basis and the polarization state for the photon
must be truly random for a secure system. Although
mathematical algorithms can be used to obtain pseu-
dorandom numbers that exhibit some statistical ran-
dom behavior, they are not truly random in the sense
that the algorithmic method is deterministic in nat-
ure. Since randomness is inherent in quantum phy-
sics, a physical random number generator built upon
a quantum mechanical process would offer true ran-
domness. For example, consider a single-photon, j1i,
entering a lossless 50=50 beam splitter by way of one
of two input ports. The state at the output ports of the
beam splitter is easily calculated to be in quantum
superposition, jψi ¼ ðj1it þ j1irÞ=

ffiffiffi
2

p
, where the sub-

scripts t and r refer to the two output modes of the
beam splitter. The single-photon detectors placed
at the output ports perform the projection measure-
ment on the quantum state jψi: when the t (r) detec-
tor clicks, we know that the quantum state has
collapsed to j1it (j1ir). It can easily be seen that each
detector has 50% probability of registering the

photon but, within the framework of quantum phy-
sics, it is not possible to predict which of the two
detectors will click. Since the final outcome is inher-
ently nondeterministic and quantum mechanically
random, this process can then be used to build a
quantum random number generator (QRNG). Hence,
this discussion allows us to identify the key elements
that give rise to quantummechanical randomness as
the projection measurement and the quantum super-
position state. In other words, quantum mechanical
randomness arises from the projection measurement
on a quantum superposition state.

Obviously, the single-photon beam-splitting
scheme discussed above would make the ideal QRNG
if properly implemented. Unfortunately, an efficient
single-photon source that is essential for the beam-
splitter-based QRNG does not yet exist and the
scheme, in practice, is implemented with attenuated
optical pulses [1–3]. Thus, practical implementations
of the beam-splitter-based QRNG scheme do not
properly realize the key elements, which are quan-
tum superposition and projection measurement, for
the QRNG. These implementations should therefore
be considered as classical physical random number
generators inspired by the ideal quantum scheme.

Recently, a number of alternative QRNG schemes
were reported in the literature [4–8]. Some of these
schemes make use of Poissonian statistics inherent
in the photon emission and detection processes to
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extract random bit sequences [4–6]. The key ele-
ments of QRNG, i.e., projection measurement and
quantum superposition, however, have not been in-
voked in these schemes. Implementations of QRNG
that do in fact realize the projection measurement
and the quantum superposition state are reported
in Refs. [7,8]. In Ref. [7], the beam-splitter-based
QRNG scheme was implemented with the heralded
single-photon state from spontaneous parametric
downconversion (SPDC). This implementation, how-
ever, is based on postselection of the detected events,
requiring two detectors and a coincidence circuit for
coincidence-based postselection [9]. In Ref. [8], a
QRNG scheme involving a two-photon polarization
entangled state is reported [10–12]. While this
scheme could, in principle, achieve the projection
measurement on a quantum superposition state, pre-
paring and maintaining a pure polarization en-
tangled state are difficult experimental tasks and
often require quantum state tomography.
We report a novel QRNG based on the photon-

number–path entangled state that is prepared by
means of two-photon Hong–Ou–Mandel quantum in-
terference at a beam splitter. Since the randomness
in our scheme comes from the projection measure-
ment of the two-photon photon-number–path en-
tangled state, the quantum mechanical origin of
randomness can be guaranteed for the generated
bit sequences. Furthermore, the use of photon-num-
ber–path entanglement not only makes the pure
state preparation easier but also removes the
lengthy quantum state tomography process from
state characterization as the visibility of the
Hong–Ou–Mandel interference is a good measure
of the prepared quantum state.

2. Quantum Random Number Generator Based on
Photon-Number Path Entanglement

A schematic of the QRNG using the photon-number–
path entanglement is shown in Fig. 1. A pair of
816nm photons is generated in a 1mm thick type-
II BBO crystal by means of the SPDC process
pumped by a 408nm diode laser. The type-II BBO
crystal is phase matched so that the signal–idler
photon pairs emerge from the crystal in a beamlike
configuration at a �3:2° angle with respect to the
pump laser [13,14]. The 40mW pump laser was fo-
cused at the BBO crystal by use of an f ¼ 300mm
lens. A pair of 10nm full width at half-maximum
(FWHM) interference filters (IFs) was used to cut
the unwanted pump wavelength noise and the
signal–idler photons were coupled to a single-mode
optical fiber by use of a ×10 objective lens. The
signal–idler photons were then brought together at
a 3dB (or 50=50) fiber beam splitter (FBS). The fiber
polarization controllers (FPCs) were used to ensure
that the arriving photons have the same polarization
state and the adjustable air gaps (AGs) allow us to
control the arrival time difference between the
photons at the FBS.

The input quantum state to the FBS is written as
jψii ¼ j1i1 ⊗ j1i2, referring to the two-photon state
where each photon of the SPDC photon pair occupies
one of the two input modes of the FBS. It is well
known that, when a pair of identical photons arrive
simultaneously at a 50=50 beam splitter by way of
different input ports, two-photon quantum interfer-
ence takes places and, as a result, the two photons
always exit the beam splitter through the same out-
put port [15–19]. The quantum state that occupies
the two output modes of the FBS is then calculated
to be

jψi ¼ j2i3 ⊗ j0i4 þ j0i3 ⊗ j2i4ffiffiffi
2

p ; ð1Þ

where, for example, j2i3 ⊗ j0i4 refers to the probabil-
ity amplitude of finding two photons (zero photons)
in the lower (upper) output mode of the FBS.

Since the preparation of the photon-number–path
entangled state in Eq. (1) is at the heart of the cur-
rent QRNG scheme, it is of utmost importance to ex-
perimentally prepare a high-purity photon-number–
path entangled state. To verify the preparation of
Eq. (1), we can make use of the two-photon dip by
connecting the two output fibers (modes 3 and 4)
of the FBS to single-photon counting detectors and
observing the coincidence count between them. As
demonstrated in Ref. [15], the high visibility (ap-
proaching 100%) two-photon dip is the de facto sig-
nature of the two-photon photon-number–path
entangled state in Eq. (1).

Figure 2(a) shows the experimental data, i.e., coin-
cidences between single-photon detectors connected
to modes 3 and 4 of the FBS. The data demonstrate
near-perfect two-photon visibility: a Gaussian fit (so-
lid curve) to the data resulted in a visibility of
100� 0:0168%. The coincidence between detectors
D1 and D3 shows a dip with the same visibility.
We note that, in the present QRNG, observing the
two-photon dip is sufficient to characterize the quan-
tum state needed for the QRNG operation. This pro-
cess is much simpler and easier than characterizing
the two-photon polarization entanglement by means
of quantum state tomography [8].

The projection measurement in Eq. (1) would then
reveal quantum mechanical randomness, and this
can be accomplished by connecting a photon number
resolving detector at each output mode of the FBS.
Since we need to resolve only the two-photon state,
j2i, we implemented the photon number resolving
detector with a FBS, two single-photon counting de-
tectors, and a coincidence circuit (with a 3ns coinci-
dence window), as shown in Fig. 1. Provided that the
quantum state in Eq. (1) is being measured, the co-
incidence event between detectors D1 and D2 or D3
and D4 tells us that the state has collapsed to j0i3 ⊗

j2i4 or j2i3 ⊗ j0i4, respectively. Figures 2(b) and 2(c)
show the D1–D2 and D3–D4 coincidence measure-
ments, respectively, as a function of the AG delay:
the peaks at the zero AG delay are the result of
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the projection measurement on the photon-number–
path entangled state in Eq. (1) [20].
Clearly, the projection measurement in Eq. (1)

would leave us either with a D1–D2 coincidence or
a D3–D4 coincidence, and this event is truly quan-
tum mechanically random with equal probability.
We can thus make use of these coincidence events
to generate a bit sequence that is truly quantum me-
chanically random. We emphasize that, for this type
of coincidence measurement to have the above opera-
tional interpretation, it is essential to ensure that
what is being measured is the photon-number–path
entangled state in Eq. (1). To do this, we keep the AG
at the zero delay position and constantly monitor the
D1 to D3 coincidence. Otherwise, the output becomes
a classical random process that is due to multiple
beam splitters and coincidence measurements.
The schematic for the random bit sequence genera-

tion is shown in Fig. 3. A counter/timer board
(National Instruments PCI-6602) records the bit se-
quences with an external function generator as the

counting clock. Whenever there is a coincidence
event (D1–D2 or D3–D4) between the two adjacent
clock pulses, the event is recorded as a 0 bit value
for the D1–D2 coincidence and a bit value of 1 for
the D3–D4 coincidence. When there are two or more
events within the time period, we record an error bit
at the next clock pulse.

3. Error Analysis

In our scheme, if the input state to the FBS is given
as jψii ¼ j1i1 ⊗ j1i2, it is guaranteed that all the er-
ror bits originate from these multiple D1–D2 or D3–
D4 coincidence events during the clock sequence. For
this to happen, it is critical to make sure that the out-
put state of the FBS is indeed described by the state
in Eq. (1). This condition was ensured in our experi-
ment by the near-perfect two-photon quantum inter-
ference exhibited in Fig. 2(a). The bit error rate
(BER), the ratio of the number of error bits to the
number of total bits, can be evaluated as follows. As-
suming that the probability of a single D1–D2 or D3–
D4 coincidence event during the clock cycle is equal,

Fig. 1. (Color online) Schematic of the experiment. The
two-photon photon-number–path entangled state is prepared by
interfering the SPDC photon pair at a FBS. The coincidence events
between detectors D1–D2 and D3–D4 form bit value 0 and bit
value 1, respectively.

Fig. 2. (Color online) (a) Coincidence between two detectors placed at the end of the first FBS. The solid curve represents a Gaussian fit to
the data and the resulting visibility is 100� 0:0168%. The D1–D3 coincidence shows a dip with the same visibility. (b) D1–D2 coincidence
and (c) D3–D4 coincidence exhibit peaks at the delay where the dip occurs.

Fig. 3. (Color online) Bit sequence generation scheme. D1–D2 co-
incidence and D3–D4 coincidence occur randomly because of the
entangled state in Eq. (1). If there is a D1–D2 or D3–D4 coinci-
dence event between two successive counting clock pulses, we re-
cord a bit value of 0 or 1, respectively. If there are two or more such
events within the time period, we record that as an error. The error
bit can be removed by increasing the counting clock frequency.
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the probability of generating a bit is given as
ð1 − tÞ=f , where f is the clock frequency and t varies
between 0 ≤ t ≤ 1. Then, the probability of this bit to
become an error bit is

R
1
0 RBð1 − tÞ=fdt ¼ RB=2f ,

where RB is the bit generation rate determined from
the coincidence rates D1–D2 and D3–D4. If N is the
number of total bits in the sequence, the number of
error bits is NRB=2f . The BER thus is calculated to
be

BER ¼ RB

2f
: ð2Þ

The above relation was tested by measuring the BER
versus the clock frequency. In this experiment,
RB ¼ 668Hz, as determined from the coincidence
rates. Figure 4 shows the experimental data that
are in good agreement with Eq. (2).
Another potential source of error is due to the fact

that the SPDC process is in fact described by

jψi ¼ j0i þ ηj1i1 ⊗ j1i2 þ η2j2i1 ⊗ j2i2 þ…; ð3Þ

where η is the pair-photon generation efficiency. The
effect of the double-pair amplitude, which is propor-
tional to η2, on the QRNG scheme can be studied by
evaluating the state at the output of the FBS in Fig. 1,
which is due to the double-pair amplitude at the in-
put. It is straightforward to show that the double-
pair amplitude, j2i1 ⊗ j2i2, at the input modes of
the FBS in Fig. 1, with the Hong–Ou–Mandel inter-
ference condition satisfied, is unitarily transformed
to

ffiffiffi
6

p

4
ðj4i3 ⊗ j0i4 þ j0i3 ⊗ j4i4Þ þ

j2i3 ⊗ j2i4
2

: ð4Þ

The first two amplitudes in Eq. (4) correspond to the
four-photon photon-number–path entangled state.
Thus, the double-pair amplitude in Eq. (3) can actu-
ally be used to generate random bit sequences by
using proper projection measurement schemes and
by assigning bit values of 1 and 0 to the j4i3 ⊗

j0i4 and j0i3 ⊗ j4i4 measurements, respectively.

The third amplitude in Eq. (4) would then contribute
to the error, and this is the only amplitude that could
cause D1–D2–D3–D4 fourfold coincidences in the
scheme shown in Fig. 1. However, since η ≪ 1 even
in the case of ultrabright entangled photon sources
[21], the double-pair term can be ignored in most
situations. Furthermore, in our experiment, we
constantly monitored the D1–D2–D3–D4 fourfold co-
incidences but observed none. We therefore conclude
that errors to the random bit sequences in our
scheme arise only frommultiple D1–D2 or D3–D4 co-
incidences within the clock period and, thus, the BER
is well described by Eq. (2).

4. Unbiasing and Randomness Test

Random bit sequences are recorded at a clock fre-
quency of 500kHz where the experimental BER is
zero; higher clock rates do not improve the random
bit generation rate. To make sure the two-photon
state in Eq. (1) is maintained for the duration of
the random bit recording session, the D1–D3 coinci-
dence was monitored at all times; nonzero D1–D3
coincidence events are not present in our experimen-
tal data.

The 0 and 1 recorded random binary sequences
should, in principle, be unbiased, i.e., the number
of 0s and 1s should be the same. However, due to ex-
perimental imperfections, such as detection effi-
ciency mismatches and different optical losses, the
0s occur somewhat less than the 1s in our experiment
as shown in Figs. 2(b) and 2(c). We thus applied the
well-known unbiasing algorithm to the recorded bit
sequence: two successive bits are grouped together,
forming four possible pairs: 00, 01, 10, and 11. If
the binary sequence is biased, the probabilities of
00 and 11 are not equal so we discard these groups.
The probabilities of 01 and 10 are, however, equal so
we convert the bit group 01 as 0 and 10 as 1 [22,23].
As a result, we are left with a set of unbiased random
binary sequence of 0s and 1s. In our experimental
data, the length of the final unbiased bit sequence
was 23.96% of that of the original biased bit
sequence.

Three sets of 1Mbit long (1,009,000 to be exact) un-
biased random binary sequences are recorded and
the randomness of the sequences are tested by using
the widely used NIST statistical test suite (STS) [24].
The STS consists of a set of 15 randomness tests,
evaluating the P value to quantify the randomness
of the sequence. In short, if the P value is less than
significance level α, the STS concludes that the se-
quence is not random with a confidence of 1 − α.
The significance level of 0.01 (the default setting of
the STS and a common value used in cryptography)
was chosen for the tests and the three random se-
quences passed all the tests in the STS; see Table 1.
We note that the STS test does not guarantee
randomness unless the length of the sequence is
infinitely long [24]. The results, however, indicate
the absence of any statistical patterns in the
sequence.

Fig. 4. (Color online) BER versus the counting clock frequency.
The solid curve represents Eq. (2) with RB ¼ 668Hz. The filled cir-
cles represent the experimental data with one standard deviation
error bar.
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5. Summary

In summary, we demonstrated a novel quantum ran-
dom number generator based on the two-photon
photon-number–path entangled state. Since the ran-
domness in our scheme is based on the projection
measurement of the entangled two-photon state,
the bit sequence is truly quantum mechanically ran-
dom. In addition, our QRNG scheme is simple to im-
plement and characterize compared with other
schemes. Finally, we note that the random bit gen-
eration rate can be substantially improved by utiliz-
ing a high-brightness two-photon source based on
quasi-phase-matched crystals [21].
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