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Abstract:  We demonstrate the conditional reversal of a weak (partial-
collapse) quantum measurement on a photonic qubit. The weaktum
measurement causes a nonunitary transformation of a quftithwis
subsequently reversed to the original state after a suctesversing
operation. Both the weak measurement and the reversal taperare
implemented linear optically. The state recovery fideldgtermined by
guantum process tomography, is shown to be over 94% forgbadilapse
strength up to 0.9. We also experimentally study infornmatiain due to
the weak measurement and discuss the role of the reversergtam as an
information erasure.
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1. Introduction

The projection postulate states that measurement of eblacéa quantum system irrevocably
collapses the initial state to one of the eigenstates (sparding to the measurement outcome)
of the measurement operator and is one of the basic postwhtee standard quantum theory
[1, 2]. The initial state can never be recovered after a ptme measurement on a quantum
system.

If the measurement is not sharp (i.e., non-projective measent), however, the situation is
different. It is possible to reverse the measurement-iadwstate collapse and the unsharpness
of a measurement has been shown to be related to the pratiahilature of the reversing
operation which can serve as a probabilistic quantum eawection [3]. In particular, practical
schemes for reversing the state collapse due to a weak (talpzollapse) measurement in
a solid-state qubit have been proposed in Ref. 4 and one cfdiemes has recently been
demonstrated using a superconducting phase qubit in Ref. 5.

Since single-photon states and linear optics play impbrtdes in quantum communication
and quantum computing research [6, 7, 8, 9], it is of inteagst importance to investigate
how the measurement-induced state collapse due to a weaursesnt can be reversed for
a photonic qubit. In this letter, we report a linear opticaplementation of conditional rever-
sal of weak (or partial-collapse) quantum measurementspirotonic qubit. We demonstrate
experimentally that a nonunitary transformation of a phat@ubit, caused by a weak quan-
tum measurement, can be reversed by applying an apprdpid@signed reversing operation.
We also quantify and experimentally study information ghie to the weak measurement and
discuss the role of the reversing operation as an informatiasure.

2. Theory

Consider the initial state of a qubit represented in the adatfpnal basis,

o) = a|0) + B|1), 1)

where|al|? + |8|?> = 1. Ordinary projection measurement in the computationaisoaould
collapse the state int®) (or |1)) with the probability equal téa|? (or |3|?). The projection
measurement cannot be reversed because the projectiatager

Po=10)(0] = (5 ) @)

and
Py =[1)(1=(89) (3)

do not have mathematical inverse. An unsharp measuremetiteoqubit, however, can be
reversible (although with a less than unity success prdibgtzind the probability of successful
reversal is related to the unsharpness of the measurenjent [3

The unsharp measurement that we consider in this paper i&é¢h& or partial-collapse
measurement discussed in Ref. 4 and Ref. 5, originally dedrfor a solid-state qubit. An
essential part of the weak measurement is a detector, whéasues the qubit, function as
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follows: the detector clicks with a probabilifyif the qubit is in the|1) state and never clicks
if the qubit is in the|0) state. The detector, thus, provides some partial infoonabout the
initial state of the qubit and, as we shall show later, thectet’s output (click or no click) can
be used to guess the initial state.

Let us first assume that the detector has clicked. This &ituét identical to the normal
projection measurement in which the state of the qubit &/ocably collapsed to thé) state.
The measurement operator describing this situation carrittemvas

we = venai= (g 7). “@

With no mathematical invers#); is not reversible and, therefore, is of no interest to us.

Now, consider the situation in which the detector has nakelil. The measurement operator
M, corresponding to this situation can be evaluated by usiagetationl = MIMl +M,M;
and is given by

Ma = 10101+ V=PI = (5 1) )

The null output of the detector, therefore, correspondpfiydng theM, measurement oper-
ator to the qubit and this is precisely the weak (or part@lapse) measurement that we are
interested in this paper.

The state of the qubit right after the null outcome of the diteis given as,

|¢m) = Ma| o) / 1/ (Wo|MaMa| o) = a'[0) + B'|1), (6)
wherea’ = a/+/1—|B|?p andB’ = B/I— p/+/1— |B|?p. To reverse the effect of the weak

measurement, i.e., to recover the original stdkg from the statéyn), we only need to apply

the inverse oMy,
_ 1 Vi-p O
1_
M _a/—l—p( 0 1)’ (7)
to the staté(m,) and the reversing operatid, ! exists mathematically as long as the variable
p, defined as the partial-collapse strength, is less thaw.\iiihe normal projection measure-

ment corresponds tp=1.)
Assuming thatM, may be implemented for a photonic qubit, let us now examirve Mgl

can be realized experimentally. Sirldg* can be re-written as

O ML [ R S

we define the physical implementation of the reversing dperasM;>, i.e., the sequence of a
bit-flip operation, another weak measuremiéiat and a final bit flip operation. The probability
of successful reversal will always be less than unity anetddmn the partial-collapse strength
p asM5® does not include the constant Y1 —p.

3. Experimental setup

The experimental setup to implement the weak measurementh@nreversal operation for
a photonic qubit is schematically shown in Fig. 1. The sifgteton state necessary for the
implementation was prepared by spontaneous parametrin-dowersion (SPDC) [10, 11].
A 405 nm cw multi-mode diode laser was used to pump a 3 mm tlyig&-tl BBO crystal
to generate a pair of collinearly propagating SPDC phot@mered at 780 nm (signal) and
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Fig. 1. Schematic of the experimental setup. The heraldeglesphoton state is used for
encoding the polarization qubity) with a set of quarter and half-wave plates (WP). The
partial-collapse measurement is implemented with a set@f/Bter-angle glass plates (BP)
and the partial-collapse strengtlis varied by increasing the number of BP’s. The reversing
operation requires two half-wave plates (HWP), in additmthe BP. Qubit state tomogra-
phy is performed with WP and a polarizer (P).

842.4 nm (idler). The idler photon was detected at a trigggedtor (not shown in Fig. 1)
and an 80 nm bandpass filter was used in front of the triggexctiatto reduce noise. When
the trigger detector detects the idler photon, the signatghis conditionally prepared in the
single-photon state [10, 11]. The initial state of the ph@ajubit |) is then prepared by
polarization encoding of the heralded single-photon stdtie a set of half-wave and quarter-
wave plates (WP).

The weak (or partial-collapse) measurement on the photprid is implemented by using
an uncoated glass plate oriented at the Brewster angle (B8P3 aingle-photon detector posi-
tioned at the reflected mode, see Fig. 1. Since BP only refieetsertical polarization state,
|1), with a probability of reflectiorp, finding a single-photon in the reflected mode (identi-
fied by a click at the single-photon detector) is equivalergubjecting the photonic qubit to
M; measurement and this results in irreversible state calaépghe statel). For the weak
measuremenil,, we must consider the conjugate outcome in which the reflectade of BP
is not occupied by the single-photon (hence the singlegrhdétector does not click). The null
event at the single-photon detector in the reflected modé>aofdArk port in Fig. 1) unambigu-
ously signals that the single-photon found in the trangdithode of BP has been subjected to
the weak measuremell, and the original statgl,) has been partially collapsed [igm).

Since the scheme is implemented using the heralded simglep state, there is no need
to monitor the dark port in practice [12]. Recording the cidence event between the trig-
ger detector and the detector placed in the transmitted rabB®@ is sufficient to implement
the weak measuremeht; on the photonic qubit without any background noise. Theiglart
collapse strengthp of the weak measurement can be increased by stacking mes@Be,'in the
experimentp is varied between 0.4 and 0.9 [13]. The reversing operafiiis implemented
with two half-wave plates for the bit-flip operations and efdBP’s for the weak measurement
M2 whose partial collapse strengptis identically set to the initial weak measurement.

Finally, coincidences between the trigger and the signiziaiers were recorded and the sig-
nal detector was equipped with a 12.5 nm bandpass filter meh&t 780 nm. To determine the
state of the photonic qubit completely, quantum state taaqany was performed to the her-
alded single photon state by making projection measuresnemifferent measurement basis
with WP and a polarizer (P) [14].
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Fig. 2. The initial states (first row), the states after thetiphcollapse measurement (second
row), and the recovered states (third row) are represemtéiaeoBloch sphere, as measured
by quantum state tomography. For the second and the thirg, ttv points on the Bloch
sphere correspond to varied partial-collapse streipgtfihe fourth row shows the fideli-
ties between the initial states and the recovered statamatidns of the partial-collapse
strength. The input states are (Hl)), (b) |L), (c) [V), and (d)|A).

4. Tomographic analysis of the experimental data

In experiment, we tomographically analyzed the input stgite, the partially-collapsed state
|¢m), and the recovered state by sequentially adding the padl&Epse measurement and the
reversing operation, corresponding to a specific parbd&pse strengtip, to the experimental
setup for state preparation. The experiment was then reppéat a different value op.

Total of 14 input states were experimentally tested and,ign E, the results of quan-
tum state tomography for four important input statgs)( |V), |A) = (JH) —|V))/v/2, and
IL) = (JH) +i|V))/v/2) are reported. It is evident from the experimental data e partial-
collapse measurement has little effect on the computdtimasis state$H) and|V), but the
state collapse due to the measurement is clearly demaetsti@t the other input states. The
experimental data represented on the Bloch sphere alsotslabthe reversing operatidis™
restores the partially-collapsed stai#,) back to the original statal,) quite faithfully: the
fidelities (shown in the fourth row of Fig. 2) calculated betm the recovered states and the
input states are shown to be over 94% for all 14 input statéstithe partial-collapse strength
p tested in the experiment.
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Fig. 3. (a2) Quantum process tomography majior both the partial-collapse measure-
ment and the reversing operation together at partial{es#lastrengthp = 0.895. It is clear
that the quantum process due to the partial-collapse memsumt and the reversing opera-

tion together is mainly of the identity operation acting be gubit. (b) The fidelity of the
guantum process is over 94% for all the partial-collapsnstihp tested in the experiment.

The quantum state tomography data shown in Fig. 2 for theifgquut states|H), [L), V),
and|A)) then allow us to completely characterize quantum operatiovolved in this experi-
ment, namely the weak measurembhtand the reversing operatidn™ [2]. The matrix,
known as the quantum process tomography (QPT) matrix, eetelglcharacterizes the quan-
tum operation and the QPT matnxwas reconstructed experimentally from the experimentally
reconstructed density matrices for the input states, theréiov in Fig. 2, and for the recovered
states, the third row in Fig. 2, using the maximum-likelid@stimation process [15].

In Fig. 3(a), the QPT matrix, in the Pauli matrix basisl (X,Y,Z), for both the weak
measuremen¥l, and the recovering operatid5™ together at partial-collapse strengih=
0.895 is shown. Since the reversing operation is supposednpletely (albeit probabilisti-
cally) recover the initial quantum state, the quantum ogpemanvolving bothM, and M%*V
should ideally be an identity operation and the correspun@PT matrix should be peaked at
(I,1) only for Re[x]. The experimentg( shown in Fig. 3(a) clearly confirms this prediction.

To have quantitative understanding on the performanceeofdhersing operation, we have
determined the QPT matrices for bdih andMZ®¥ operations together for a number of partial-
collapse strengtp and obtained the reversing fidelity

F=Tr [XepridealL 9)

defined as the overlap of the experimentally reconstructe@ @atrix xexp and the ideal one
Xideal Pe2Ked afl,1) only for Re[Xigeal. The result shown in Fig. 3(b) demonstrates that the
reversing operation functions quite well as designed: thadify of the quantum process is over
949% for all partial-collapse strength tested in the experim
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Fig. 4. Information gain via the weak measurement (quadtéi&Gayg) for the two guess-
ing strategies discussed in the text as functions of theégbaxllapse strengtip. The ran-
dom guess and the projection measurement correspopda=té and p = 1, respectively.
Solid lines are theory plots.

5. Information gain and optimal guessing strategy

Let us now discuss the experimentin the context of inforamediain via the weak measurement.
The detector output (click or no click) allows us to guesdtiteal state of the quantum system,
Pa, and the quality of our guess can be quantified with the esitimédelity, defined as [16, 17]

Gavg= / (Wol P | o) d . (10)

First, consider the following guessing strategy: if theedtadr clicks (i.e.M1 measurement
occurs), we guess the initial state|&sand if there is no click at the detector (i.®l; measure-
ment occurs), we guess that the qubit was more likely if@pstate than in thél) state [4, 5].
Therefore, our guess for the initial state of the qubit is

PG = P1[1) (1] + Po{p|0) (O] + (1 - p)|1) (L]}, (11)
where p is the partial-collapse strengthP;, = (L,UO|MIM1|1,UO) = p|B%, and P, =
(l,llo|l\/|;rl\/|2|l,llo> = |a|>+ (1 p)|B|2 Itis then straightforward to show that

Gavg = (3+p%)/6. (12)

When no measurement is made (random gupss;0), vag =1/2 and if p=1 (projection
measurement)E[,,“,g = 2/3, as it should be for a qubit [16, 17].

Although the above guessing strategy may look reasonaide)ot the optimal one. The op-
timal strategy is, in fact, to simply guess the initial stas¢0) if the detector does not clichM»
measurement). Formally speaking, the optimal guessiatesty must choose the eigenstate of
a measurement operator associated with the largest eigeri®]. For theM, operator, this
corresponds to thi®) state. The guessed state is then

pg = P1/1)(1]+P2l0)(0] (13)
and this leads to the estimation fidelity

Ghyg= (3+)/6. (14)
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In Fig. 4, we show the estimation fidelities for both guessirgtegies. The experimental
estimation fidelities are obtained by evaluatify|pc|Wo) from the experimental data for a
set of initial states and then by averaging them [17]. Cle#ne second strategy offers a better
estimation fidelity when the partial-collapse strengthgdoet correspond to the random guess
(p = 0) and the projection measuremept£ 1).

The reversing operation then erases the information gailagtie weak measurement. Since
both the weak measurement and the reversing operation ecessful only when all the re-
flected modes of BP’s in Fig. 1 are not occupied by a photonptlezall operation can be

written as
MZEMy = 14/1— p. (15)

Thus, the probability of successful reversal is- p regardless of the input state, indicating
that the experimenter cannot learn anything about thelrstate from the success probability
determined with an identically prepared ensemble of quiite estimation fidelity in this
case, obviously, is always 1/2 which is equivalent to rangaguessing the input state and,
therefore, there is no information gain if the reversal atien is successful. In other words,
the information gained via the weak measurement has besedeby the reversing operation.

6. Conclusion

We have demonstrated a linear optical implementation ofwb&k (partial-collapse) quantum
measurement and conditional (probabilistic) reversahefteak measurement for the photonic
qubit. The quantum states and the involved quantum prosesseguantitatively analyzed by
using quantum state and process tomography techniquegoVer, we have quantified and
experimentally studied information gain due to the weak sneament and discussed the role
of the reversing operation as an information erasure.

Acknowledgments

YSK acknowledges the support of the Korea Research Foumd@iRF-2007-511-C00004).
This work was supported, in part, by the Korea Science andneegng Foundation (RO1-
2006-000-10354-0) and the Korea Research Foundation (RIR¥B-312-C00551), and the
Ministry of Knowledge and Economy of Korea through the Uit Quantum Beam Facil-
ity Program.

#111675 - $15.00 USD Received 20 May 2009; revised 17 Jun 2009; accepted 21 Jun 2009; published 30 Jun 2009
(C) 2009 OSA 6 July 2009/ Voal. 17, No. 14/ OPTICS EXPRESS 11985



