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Abstract: We demonstrate the conditional reversal of a weak (partial-
collapse) quantum measurement on a photonic qubit. The weakquantum
measurement causes a nonunitary transformation of a qubit which is
subsequently reversed to the original state after a successful reversing
operation. Both the weak measurement and the reversal operation are
implemented linear optically. The state recovery fidelity,determined by
quantum process tomography, is shown to be over 94% for partial-collapse
strength up to 0.9. We also experimentally study information gain due to
the weak measurement and discuss the role of the reversing operation as an
information erasure.
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1. Introduction

The projection postulate states that measurement of a variable of a quantum system irrevocably
collapses the initial state to one of the eigenstates (corresponding to the measurement outcome)
of the measurement operator and is one of the basic postulates of the standard quantum theory
[1, 2]. The initial state can never be recovered after a projection measurement on a quantum
system.

If the measurement is not sharp (i.e., non-projective measurement), however, the situation is
different. It is possible to reverse the measurement-induced state collapse and the unsharpness
of a measurement has been shown to be related to the probabilistic nature of the reversing
operation which can serve as a probabilistic quantum error correction [3]. In particular, practical
schemes for reversing the state collapse due to a weak (or partial-collapse) measurement in
a solid-state qubit have been proposed in Ref. 4 and one of theschemes has recently been
demonstrated using a superconducting phase qubit in Ref. 5.

Since single-photon states and linear optics play important roles in quantum communication
and quantum computing research [6, 7, 8, 9], it is of interestand importance to investigate
how the measurement-induced state collapse due to a weak measurement can be reversed for
a photonic qubit. In this letter, we report a linear optical implementation of conditional rever-
sal of weak (or partial-collapse) quantum measurements on aphotonic qubit. We demonstrate
experimentally that a nonunitary transformation of a photonic qubit, caused by a weak quan-
tum measurement, can be reversed by applying an appropriately designed reversing operation.
We also quantify and experimentally study information gaindue to the weak measurement and
discuss the role of the reversing operation as an information erasure.

2. Theory

Consider the initial state of a qubit represented in the computational basis,

|ψo〉 = α|0〉+ β |1〉, (1)

where |α|2 + |β |2 = 1. Ordinary projection measurement in the computational basis would
collapse the state into|0〉 (or |1〉) with the probability equal to|α|2 (or |β |2). The projection
measurement cannot be reversed because the projection operators

P0 = |0〉〈0| =
(

1 0
0 0

)

(2)

and
P1 = |1〉〈1| =

(

0 0
0 1

)

(3)

do not have mathematical inverse. An unsharp measurement onthe qubit, however, can be
reversible (although with a less than unity success probability) and the probability of successful
reversal is related to the unsharpness of the measurement [3].

The unsharp measurement that we consider in this paper is theweak or partial-collapse
measurement discussed in Ref. 4 and Ref. 5, originally intended for a solid-state qubit. An
essential part of the weak measurement is a detector, which measures the qubit, function as
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follows: the detector clicks with a probabilityp if the qubit is in the|1〉 state and never clicks
if the qubit is in the|0〉 state. The detector, thus, provides some partial information about the
initial state of the qubit and, as we shall show later, the detector’s output (click or no click) can
be used to guess the initial state.

Let us first assume that the detector has clicked. This situation is identical to the normal
projection measurement in which the state of the qubit is irrevocably collapsed to the|1〉 state.
The measurement operator describing this situation can be written as

M1 =
√

p|1〉〈1| =
(

0 0
0

√
p

)

. (4)

With no mathematical inverse,M1 is not reversible and, therefore, is of no interest to us.
Now, consider the situation in which the detector has not clicked. The measurement operator

M2 corresponding to this situation can be evaluated by using the relation1 = M†
1M1 + M†

2M2

and is given by

M2 = |0〉〈0|+
√

1− p|1〉〈1| =
(

1 0
0

√
1− p

)

. (5)

The null output of the detector, therefore, corresponds to applying theM2 measurement oper-
ator to the qubit and this is precisely the weak (or partial-collapse) measurement that we are
interested in this paper.

The state of the qubit right after the null outcome of the detector is given as,

|ψm〉 = M2|ψo〉/
√

〈ψo|M†
2M2|ψo〉 = α ′|0〉+ β ′|1〉, (6)

whereα ′ = α/
√

1−|β |2p andβ ′ = β
√

1− p/
√

1−|β |2p. To reverse the effect of the weak
measurement, i.e., to recover the original state|ψo〉 from the state|ψm〉, we only need to apply
the inverse ofM2,

M−1
2 =

1√
1− p

(√
1− p 0
0 1

)

, (7)

to the state|ψm〉 and the reversing operationM−1
2 exists mathematically as long as the variable

p, defined as the partial-collapse strength, is less than unity. (The normal projection measure-
ment corresponds top = 1.)

Assuming thatM2 may be implemented for a photonic qubit, let us now examine how M−1
2

can be realized experimentally. SinceM−1
2 can be re-written as

M−1
2 =

1√
1− p

(

0 1
1 0

)(

1 0
0

√
1− p

)(

0 1
1 0

)

≡ 1√
1− p

Mrev
2 , (8)

we define the physical implementation of the reversing operation asMrev
2 , i.e., the sequence of a

bit-flip operation, another weak measurementM2, and a final bit flip operation. The probability
of successful reversal will always be less than unity and depend on the partial-collapse strength
p asMrev

2 does not include the constant 1/
√

1− p.

3. Experimental setup

The experimental setup to implement the weak measurement and the reversal operation for
a photonic qubit is schematically shown in Fig. 1. The single-photon state necessary for the
implementation was prepared by spontaneous parametric down-conversion (SPDC) [10, 11].
A 405 nm cw multi-mode diode laser was used to pump a 3 mm thick type-II BBO crystal
to generate a pair of collinearly propagating SPDC photons centered at 780 nm (signal) and
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Fig. 1. Schematic of the experimental setup. The heralded single-photon state is used for
encoding the polarization qubit|ψo〉 with a set of quarter and half-wave plates (WP). The
partial-collapse measurement is implemented with a set of Brewster-angle glass plates (BP)
and the partial-collapse strengthp is varied by increasing the number of BP’s. The reversing
operation requires two half-wave plates (HWP), in additionto the BP. Qubit state tomogra-
phy is performed with WP and a polarizer (P).

842.4 nm (idler). The idler photon was detected at a trigger detector (not shown in Fig. 1)
and an 80 nm bandpass filter was used in front of the trigger detector to reduce noise. When
the trigger detector detects the idler photon, the signal photon is conditionally prepared in the
single-photon state [10, 11]. The initial state of the photonic qubit |ψo〉 is then prepared by
polarization encoding of the heralded single-photon statewith a set of half-wave and quarter-
wave plates (WP).

The weak (or partial-collapse) measurement on the photonicqubit is implemented by using
an uncoated glass plate oriented at the Brewster angle (BP) and a single-photon detector posi-
tioned at the reflected mode, see Fig. 1. Since BP only reflectsthe vertical polarization state,
|1〉, with a probability of reflectionp, finding a single-photon in the reflected mode (identi-
fied by a click at the single-photon detector) is equivalent to subjecting the photonic qubit to
M1 measurement and this results in irreversible state collapse to the state|1〉. For the weak
measurement,M2, we must consider the conjugate outcome in which the reflected mode of BP
is not occupied by the single-photon (hence the single-photon detector does not click). The null
event at the single-photon detector in the reflected mode of BP (dark port in Fig. 1) unambigu-
ously signals that the single-photon found in the transmitted mode of BP has been subjected to
the weak measurementM2 and the original state|ψo〉 has been partially collapsed to|ψm〉.

Since the scheme is implemented using the heralded single-photon state, there is no need
to monitor the dark port in practice [12]. Recording the coincidence event between the trig-
ger detector and the detector placed in the transmitted modeof BP is sufficient to implement
the weak measurementM2 on the photonic qubit without any background noise. The partial-
collapse strengthp of the weak measurement can be increased by stacking more BP’s and, in the
experiment,p is varied between 0.4 and 0.9 [13]. The reversing operationMrev

2 is implemented
with two half-wave plates for the bit-flip operations and a set of BP’s for the weak measurement
M2 whose partial collapse strengthp is identically set to the initial weak measurement.

Finally, coincidences between the trigger and the signal detectors were recorded and the sig-
nal detector was equipped with a 12.5 nm bandpass filter centered at 780 nm. To determine the
state of the photonic qubit completely, quantum state tomography was performed to the her-
alded single photon state by making projection measurements in different measurement basis
with WP and a polarizer (P) [14].
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Fig. 2. The initial states (first row), the states after the partial-collapse measurement (second
row), and the recovered states (third row) are represented on the Bloch sphere, as measured
by quantum state tomography. For the second and the third rows, the points on the Bloch
sphere correspond to varied partial-collapse strengthp. The fourth row shows the fideli-
ties between the initial states and the recovered states as functions of the partial-collapse
strength. The input states are (a)|H〉, (b) |L〉, (c) |V 〉, and (d)|A〉.

4. Tomographic analysis of the experimental data

In experiment, we tomographically analyzed the input state|ψo〉, the partially-collapsed state
|ψm〉, and the recovered state by sequentially adding the partial-collapse measurement and the
reversing operation, corresponding to a specific partial-collapse strengthp, to the experimental
setup for state preparation. The experiment was then repeated for a different value ofp.

Total of 14 input states were experimentally tested and, in Fig. 2, the results of quan-
tum state tomography for four important input states (|H〉, |V 〉, |A〉 = (|H〉 − |V 〉)/

√
2, and

|L〉 = (|H〉+ i|V 〉)/
√

2) are reported. It is evident from the experimental data that the partial-
collapse measurement has little effect on the computational basis states|H〉 and |V 〉, but the
state collapse due to the measurement is clearly demonstrated for the other input states. The
experimental data represented on the Bloch sphere also showthat the reversing operationMrev

2
restores the partially-collapsed state|ψm〉 back to the original state|ψo〉 quite faithfully: the
fidelities (shown in the fourth row of Fig. 2) calculated between the recovered states and the
input states are shown to be over 94% for all 14 input states and all the partial-collapse strength
p tested in the experiment.
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Fig. 3. (a) Quantum process tomography matrixχ for both the partial-collapse measure-
ment and the reversing operation together at partial-collapse strengthp = 0.895. It is clear
that the quantum process due to the partial-collapse measurement and the reversing opera-
tion together is mainly of the identity operation acting on the qubit. (b) The fidelity of the
quantum process is over 94% for all the partial-collapse strengthp tested in the experiment.

The quantum state tomography data shown in Fig. 2 for the fourinput states (|H〉, |L〉, |V 〉,
and|A〉) then allow us to completely characterize quantum operations involved in this experi-
ment, namely the weak measurementM2 and the reversing operationMrev

2 [2]. The matrixχ ,
known as the quantum process tomography (QPT) matrix, completely characterizes the quan-
tum operation and the QPT matrixχ was reconstructed experimentally from the experimentally
reconstructed density matrices for the input states, the first row in Fig. 2, and for the recovered
states, the third row in Fig. 2, using the maximum-likelihood estimation process [15].

In Fig. 3(a), the QPT matrixχ , in the Pauli matrix basis (I,X ,Y,Z), for both the weak
measurementM2 and the recovering operationMrev

2 together at partial-collapse strengthp =
0.895 is shown. Since the reversing operation is supposed to completely (albeit probabilisti-
cally) recover the initial quantum state, the quantum operation involving bothM2 and Mrev

2
should ideally be an identity operation and the corresponding QPT matrix should be peaked at
(I, I) only for Re[χ ]. The experimentalχ shown in Fig. 3(a) clearly confirms this prediction.

To have quantitative understanding on the performance of the reversing operation, we have
determined the QPT matrices for bothM2 andMrev

2 operations together for a number of partial-
collapse strengthp and obtained the reversing fidelity

F = Tr[χexpχideal], (9)

defined as the overlap of the experimentally reconstructed QPT matrixχexp and the ideal one
χideal peaked at(I, I) only for Re[χideal]. The result shown in Fig. 3(b) demonstrates that the
reversing operation functions quite well as designed: the fidelity of the quantum process is over
94% for all partial-collapse strength tested in the experiment.
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Fig. 4. Information gain via the weak measurement (quantified asGavg) for the two guess-
ing strategies discussed in the text as functions of the partial-collapse strengthp. The ran-
dom guess and the projection measurement correspond top = 0 andp = 1, respectively.
Solid lines are theory plots.

5. Information gain and optimal guessing strategy

Let us now discuss the experiment in the context of information gain via the weak measurement.
The detector output (click or no click) allows us to guess theinitial state of the quantum system,
ρG, and the quality of our guess can be quantified with the estimation fidelity, defined as [16, 17]

Gavg =
∫

〈ψo|ρG|ψo〉dψo. (10)

First, consider the following guessing strategy: if the detector clicks (i.e.,M1 measurement
occurs), we guess the initial state as|1〉 and if there is no click at the detector (i.e.,M2 measure-
ment occurs), we guess that the qubit was more likely in the|0〉 state than in the|1〉 state [4, 5].
Therefore, our guess for the initial state of the qubit is

ρ I
G = P1|1〉〈1|+ P2{p|0〉〈0|+(1− p)|1〉〈1|}, (11)

where p is the partial-collapse strength,P1 = 〈ψo|M†
1M1|ψo〉 = p|β |2, and P2 =

〈ψo|M†
2M2|ψo〉 = |α|2 +(1− p)|β |2. It is then straightforward to show that

GI
avg = (3+ p2)/6. (12)

When no measurement is made (random guess;p = 0), GI
avg = 1/2 and if p = 1 (projection

measurement),GI
avg = 2/3, as it should be for a qubit [16, 17].

Although the above guessing strategy may look reasonable, it is not the optimal one. The op-
timal strategy is, in fact, to simply guess the initial stateas|0〉 if the detector does not click (M2

measurement). Formally speaking, the optimal guessing strategy must choose the eigenstate of
a measurement operator associated with the largest eigenvalue [16]. For theM2 operator, this
corresponds to the|0〉 state. The guessed state is then

ρ II
G = P1|1〉〈1|+ P2|0〉〈0| (13)

and this leads to the estimation fidelity

GII
avg = (3+ p)/6. (14)
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In Fig. 4, we show the estimation fidelities for both guessingstrategies. The experimental
estimation fidelities are obtained by evaluating〈ψo|ρG|ψo〉 from the experimental data for a
set of initial states and then by averaging them [17]. Clearly, the second strategy offers a better
estimation fidelity when the partial-collapse strength does not correspond to the random guess
(p = 0) and the projection measurement (p = 1).

The reversing operation then erases the information gainedvia the weak measurement. Since
both the weak measurement and the reversing operation are successful only when all the re-
flected modes of BP’s in Fig. 1 are not occupied by a photon, theoverall operation can be
written as

Mrev
2 M2 = 1

√

1− p. (15)

Thus, the probability of successful reversal is 1− p regardless of the input state, indicating
that the experimenter cannot learn anything about the initial state from the success probability
determined with an identically prepared ensemble of qubits. The estimation fidelity in this
case, obviously, is always 1/2 which is equivalent to randomly guessing the input state and,
therefore, there is no information gain if the reversal operation is successful. In other words,
the information gained via the weak measurement has been erased by the reversing operation.

6. Conclusion

We have demonstrated a linear optical implementation of theweak (partial-collapse) quantum
measurement and conditional (probabilistic) reversal of the weak measurement for the photonic
qubit. The quantum states and the involved quantum processes are quantitatively analyzed by
using quantum state and process tomography techniques. Moreover, we have quantified and
experimentally studied information gain due to the weak measurement and discussed the role
of the reversing operation as an information erasure.
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