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Abstract: A pair of optical pulses traveling through two dispersive media
will become broadened and, as a result, the degree of coincidence between
the optical pulses will be reduced. For a pair of entangled photons, however,
nonlocal dispersion cancellation in which the dispersion experienced by
one photon cancels the dispersion experienced by the other photon is
possible. In this paper, we report an experimental demonstration of nonlocal
dispersion cancellation using entangled photons. The degree of two-photon
coincidence is shown to increase beyond the limit attainable without entan-
glement. Our results have important applications in fiber-based quantum
communication and quantum metrology.
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1. Introduction

Consider an ultrafast optical pulse propagating through a dispersive media. Due to the group
velocity dispersion, the wave packet of the pulse will get broadened. When two such pulses,
initially coincident in time, travel through two different dispersive media, each pulse will expe-
rience dispersion independently of the other. The dispersive broadening of the two wave packets
will then reduce degree of temporal coincidence.

When a pair of entangled photons is considered instead of two classical ultrafast pulses,
a surprising result can occur: the dispersion experienced by one photon can be canceled by
the dispersion experienced by the other and the dispersion cancellation is independent of the
distance between the two photons. The nonlocal dispersion cancellation effect, originally pro-
posed in Ref. [1], is a further manifestation of the nonlocal nature of quantum theory and is of
importance in photonic quantum information where entangled photons are distributed through
dispersive media. For instance, consider the Hong-Ou-Mandel-type quantum interference effect
resulting from the overlap between nonclassical photonic wavepackets [2]. The temporal mode
mismatch caused by the group velocity dispersion effects of the media will severely reduce
the quality of quantum interference which in turn will have negative impact on the efficiency
of Bell-state measurement in quantum teleportation [3], the fidelity of the photonic quantum
gates [4], the quality of entanglement swapping [5], etc. The nonlocal dispersion cancellation
effect can be effectively utilized in these applications to remove unwanted dispersive effects on
nonclassical wave packets without the loss of photons.

Although the nonlocal dispersion cancellation effect has been theoretically shown to be im-
portant in many quantum metrology applications [6, 7], it has not been conclusively demon-
strated to date [8, 9]. In this paper, we report an explicit experimental demonstration of the
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Fig. 1. Each photon of the entangled photon pair is subject to different dispersion β1 and
β2. The coincidence circuit measures G(2)(t1 − t2).

nonlocal dispersion cancellation effect using a pair of entangled photons. It is important to note
that the nonlocal dispersion cancellation of Ref. [1], which we demonstrate in this paper, is
different from the dispersion cancellation effect of Ref. [10, 11], which is local [12, 13, 14].

2. Theory

Let us first briefly discuss the theory behind nonlocal dispersion cancellation [1, 7]. Consider a
pair of spontaneous parametric down-conversion (SPDC) photons generated at a BBO crystal,
see Fig. 1. The quantum state of the photon pair,

|ψ〉 =
∫

dω1dω2S (ω1,ω2)a†(ω1)a†(ω2)|0〉, (1)

is an entangled state since the two-photon joint spectral amplitude S is non-factorizable, i.e.,
S (ω1,ω2) �= S (ω1)S (ω2), due to the energy conservation nature of the SPDC process [15,
16]. The joint detection probability of the two detectors D1 and D2 is proportional to the Glauber
second-order correlation function

G(2)(t1, t2) = |〈0|E(+)
2 (t2)E

(+)
1 (t1)|ψ〉|2, (2)

where E(+)
1 (t1) =

∫
dω a(ω1)ei{k1z1−ω1t1}, the positive frequency part of the electric field oper-

ator at detector D1, and E(+)
2 is defined similarly. Since each photon has spectral distribution

centered at certain central frequency, Ω1 and Ω2, and assuming that the photons propagate
through dispersive media of length z1 and z2 as shown in Fig. 1, the wave number of the photon
can then be expressed as ki(Ωi ± ν) = ki(Ωi)±αiν + βiν2 (i = 1,2). Here ν is the detuning
frequency from the central frequency, and α and β are the first-order and the second-order
dispersion which are responsible for the wave packet delay and the wave packet broadening,
respectively.

For a monochromatic pump, the quantum state in Eq. (1) can be re-written as

|ψ〉 =
∫

dνS (ν)a†(Ω1 +ν)a†(Ω2 −ν)|0〉, (3)

with S (ν) = sinc(νDL/2) for nondegenerate type-I SPDC [17]. Here, L and D ≡ 1/u2 −1/u1

are the BBO crystal thickness and the inverse group velocity difference between the photon pair
in the BBO crystal, respectively. Equation (2) can then be expressed as,

G(2)(t1 − t2) =
∣∣∣∣
∫ ∞

−∞
dν S (ν) eiν(t1−t2) ×ei(α1z1−α2z2)νei(β1z1+β2z2)ν2

∣∣∣2
. (4)

The above expression can be analytically evaluated by approximating the joint spectral am-
plitude as a Gaussian function S (ν) ≈ e−γ(νDL)2

. The value γ = 0.04822 was chosen so that
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the approximated Gaussian function would have the same full width at half maximum as the
original function.

We, therefore, arrive at

G(2)(t1 − t2) ≈Ce−(t1−t2−τ̄)2/2σ2
, (5)

where τ̄ = α2z2 −α1z1 and σ2 = γD2L2 +(β1z1 +β2z2)2/γD2L2 are the overall time delay be-
tween the signal and the idler photons and the width of G(2) function after propagating through
the dispersion media, respectively. Note that C = π/

√
γ2D4L4 +(β1z1 +β2z2)2 is an unimpor-

tant proportionality factor.
Finally, the full width at half maximum value of the temporal width of G(2) function is given

as [18]

Δt ≈ 2

√
2ln2

γD2L2 (β1z1 +β2z2). (6)

The above equation shows precisely the effect we have been looking for: a positive dispersion
β1 experienced by photon 1 can be cancelled by a negative dispersion β2 experienced by photon
2. Such nonlocal dispersion cancellation effect is shown to occur only if photon 1 and photon 2
are in a specific entangled state [1].

3. Experiment

The experimental setup to implement the nonlocal dispersion cancellation effect discussed
above is schematically shown in Fig. 2. We first describe the entangled photon generation part
of the experimental setup which is not shown in the figure. A 3 mm thick type-I β -barium
borate (BBO) crystal is pumped by a cw diode laser operating at 408.2 nm (40 mW), gener-
ating a pair of collinear frequency-nondegenerate entangled photons centered at 896 nm and
750 nm via the SPDC process. For this configuration, the optic axis angle is calculated to be
28.5◦. Type-I collinear phase matching ensures that both the signal and idler photons of SPDC
have very broad spectra centered at 896 nm (over 28 nm at FWHM) and 750 nm (over 20 nm at
FWHM), respectively. The photon pair, however, is strongly quantum correlated in wavelength:
if the signal photon is found to have the wavelength λ1, then its conjugate idler photon will be
found to have the wavelength λ2 = λpλ1/(λ1 −λp), where λp = 408.2 nm. The photon pair is
in the two-photon entangled state of Eq. (3).

To efficiently couple these photons into single-mode optical fibers, the pump laser was fo-
cused with a f = 300 mm lens and the SPDC photons were coupled into single-mode optical
fibers using ×10 objective lenses located at 600 mm from the crystal. The pump beam waist at
the focus is roughly 80 μm. The co-propagating photons were then separated spatially by using
a beam splitter and two interference filters with 100 nm FWHM bandwidth, each centered at
896 nm and 750 nm. The 896 nm centered signal photon (λ1 in Fig. 2) is then coupled into a
1.6 km long single-mode optical fiber which introduces positive dispersion β1 to the photon.
As we shall show later, the effect of a positive dispersion material to the entangled photon is to
broaden the biphoton wave packet [19, 20, 21].

To demonstrate the nonlocal dispersion cancellation effect, it is necessary to introduce nega-
tive dispersion to the idler photon (λ2 in Fig. 2). Among many potential methods for introducing
negative dispersion [22], methods based on a grating pair or a prism pair are often used in ul-
trafast optics [23, 24]. In our experiment, we have used the grating pair method to introduce
negative dispersion to the idler photon λ2. Since the grating efficiency depends critically on the
wavelength of the photon, we chose non-degenerate type-I SPDC so that the spectral range of
the idler photon λ2 can be made to overlap with the optimal spectral bandwidth for our gratings
[25].
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Fig. 2. Schematic of the experiment. Positive dispersion β1 is introduced by a 1.6 km long
single-mode optical fiber and negative dispersion β2 is introduced by using a pair of grat-
ings (G1 and G2) and a mirror. FPC and M represent a fiber polarization controller and a
monochromator, respectively.

The idler photon is first coupled into a 2 m long single-mode fiber and the fiber polarization
controller (FPC) is used to set the polarization to maximize the diffraction efficiency. The grat-
ing pair G1 and G2 and a plane mirror is used to setup the negative dispersion device shown
in Fig. 2. The distance between the two gratings is set at 10 cm and the deviation angle at 750
nm is 8◦. Since the grating G2 is not big enough to cover the full bandwidth, the grating pair
system slightly reduces the spectral bandwidth of the idler photon. After experiencing negative
dispersion, the idler photon is coupled into a different 2 m long single-mode fiber for collima-
tion and is sent through a 1/2 m monochromator (CVI DK480) which functions as a tunable
narrowband filter. The monochromator M is used to spectrally-resolve the entangled biphoton
wave packet [20, 21].

Finally, the entangled biphoton wave packet is measured with two single-photon detectors
and a time-correlated single-photon counting (TCSPC; PicoHarp 300, 16 ps resolution) device.
The TCSPC histogram directly visualizes the second-order Glauber correlation function G(t1−
t2), if the observed effects are sufficiently bigger than the resolution of the measurement system.
The timing resolution of the measurement system was found to be 762 ps which corresponds to
the width of the TCSPC histogram with the signal and the idler photons coupled into 4 m long
single-mode optical fibers.

4. Results and analysis

We first observed the entangled photon wave packet when the signal photon was passed through
a 1.6 km single-mode optical fiber which introduces the positive dispersion β1. The total length
of the idler photon’s passage through the single-mode optical fiber is 4 m. Since we hope to
observe the full TCSPC histogram which represents the dispersion broadened entangled photon
wave packet, the monochromator M was not used for this measurement. The experimental data
are shown in Fig. 3(a). The measured TCSPC histogram has the FWHM width of 3.861 ns
which is significantly bigger than the timing resolution of the measurement system and is due to
the dispersive broadening of the entangled photon wave packet. For the experimentally obtained
FWHM width, we obtain β1z1 = (5.66 ps)2 using Eq. (6).

To experimentally demonstrate the nonlocal dispersion cancellation effect, it is necessary to
introduce negative dispersion β2 to the idler photon so that the positive dispersion β1 experi-
enced by the signal photon is cancelled by the negative dispersion β2 experienced by the idler
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Fig. 3. Experimentally measured entangled photon wave packet. Monochromator was not
used for this measurement. (a) With positive dispersion β1 only, the wave packet has the
FWHM width of 3.861 ns. (b) With both positive dispersion β1 and negative dispersion β2,
the wave acket has the FWHM width of 2.436 ns. Solid lines are Gaussian fit to the data.

photon [1, 7]. The experiment was performed by directing the idler photon through the grat-
ing pair system for negative dispersion, while the signal photon’s passage through the 1.6 km
single-mode fiber was not changed. As before, the monochromator M was not used for this
measurement as we aim to observe the full TCSPC histogram.

The experimental data for this measurement are shown in Fig. 3(b). While the data clearly
demonstrate reduced FWHM (2.436 ns) of the TCSPC histogram when compared to Fig. 3(a),
Fig. 3 itself is quite insufficient for a conclusive demonstration of the nonlocal dispersion effect.
It is because the grating pair system slightly reduces the spectral bandwidth of the idler photon
and the reduced FWHM shown in Fig. 3(b) could be solely due to the bandwidth reduction.

It is thus critically important to attribute how much of the wave packet reduction observed in
Fig. 3 has actually come from the nonlocal dispersion cancellation effect, if any. This critical
measurement was accomplished by spectrally resolving the two entangled photon wave packets
in Fig. 3 by introducing the monochromator M in the path of the idler photon [20, 21]. The
monochromator was set to have roughly 1.2 nm of passband and it functions as a wavelength-
variable bandpass filter. The TCSPC histograms measured for several values of the wavelength
setting of the monochromator correspond to spectrally resolved components of the entangled
photon wave packets shown in Fig. 3.

Observation of nonlocal dispersion cancellation then requires comparing the temporal spac-
ing between the spectrally resolved components of the entangled photon wave packets. If the
temporal spacing between the spectrally resolved components are reduced by the introduc-
tion of the grating pair, it conclusively confirm the nonlocal dispersion cancellation effect in
Ref. [1, 7]. On the other hand, if the temporal separation remains the same while some of the
components showing reduced amplitudes, it would mean that the overall wave packet reduction
is actually due to the bandwidth filtering.

The experimental data are shown in Fig. 4. In Fig. 4(a), the entangled photon wave packet
with positive dispersion β1 introduced in the path of the signal photon is spectrally resolved.
In Fig. 4(b), we show the spectrally resolved entangled photon wave packet when both β1 and
β2 are introduced. Comparing Fig. 4(a) and Fig. 4(b), we observe that the temporal spacings
between the spectrally resolved components are reduced when the idler photon is subject to
negative dispersion β2. This is a clear and conclusive signature of the nonlocal dispersion can-
cellation effect. It is also interesting to observe that certain spectral components (most notably,
740 nm and 760 nm) are strongly attenuated, causing reduction of the entangled photon wave
packet.

The above observations allow us to conclude that the reduced entangled photon wave packet
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Fig. 4. Spectrally-resolved entangled photon wave packet with the monochromator. (a)
With positive dispersion β1 only. (b) With both positive dispersion β1 and negative dis-
persion β2. Solid lines are Gaussian fit to the data. The nonlocal dispersion cancellation
effect is clear demonstrated.

in Fig. 3(b) is due to both the nonlocal dispersion cancellation effect and the bandwidth reduc-
tion by the grating pair system. The experimental data in Fig. 4 show that the reduction of the
temporal spacing between 740 nm and 760 nm is 478 ps. To see what the theoretically expected
value is, we need to make use of Eq. (6). The introduction of β2 reduces the width of G(2)

function by

ΔtNDC ≈ 2

√
2ln2

γD2L2 β2z2. (7)

In our experiment, DL = 88.9 fs and β2z2 for the grating pair system is given as [26],

β2z2 = − λ2

2πc2

(
λ2

d

)
G

cos(θ ′)3 , (8)

where c is the vacuum speed of light, λ2 = 750 nm, d = 1/2400 mm, G = 10 cm, and θ ′ =
60.45◦. From these values, we obtain β2z2 =−(2.03 ps)2. The theoretically calculated value of
the reduction of the biphoton wave packet, therefore, is approximately 496 ps. Considering the
measurement errors for evaluating β2z2, our experimental observation agrees very well with the
theoretical prediction [27].

We therefore estimate that, out of 1.425 ns reduction of the wave packet shown in Fig. 3,
roughly 478 ps comes from the nonlocal dispersion cancellation effect and the rest comes from
the bandwidth filtering at the grating pair. To improve the nonlocal dispersion cancellation
effect, it is necessary to eliminate the bandwidth reduction effect of the grating pair system and
it can be done by replacing the grating G2 with a larger one.

5. Discussion

Using the spontaneous parametric down-conversion photon pairs whose frequencies are anti-
correlated as in Eq. (3), we have shown that two-photon entanglement (i.e., the coherent su-
perposition of frequency-anticorrelated biphoton amplitudes) can exhibit the nonlocal disper-
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sion cancellation effect, see Eq. (6) [1]. Naturally, one might wonder whether some classical
frequency-anticorrelated states could also exhibit the nonlocal dispersion cancellation effect.
In this section, we discuss these classical cases and show that it is not possible to achieve the
nonlocal dispersion cancellation effect of Ref. [1] using classical states.

5.1. A frequency-anticorrelated mixture of two-photon states

Spontaneous parametric down-conversion produces a two-photon pure state as shown in Eq. (3).
Let us see what would happen if phase coherence is removed so that the input state is now a
frequency-anticorrelated mixture of two-photon states given as

ρmixed =
∫

dν f1(ν) f2(ν)a†(Ω1 +ν)a†(Ω2 −ν)|0〉〈0|a(Ω1 +ν)a(Ω2 −ν), (9)

where f1(ν) = f2(ν) = e−ν2/2σ2
are spectral amplitudes of photon 1 and photon 2 and

we assume they follow gaussian spectral distribution. The normalization condition gives∫
dν f1(ν) f2(ν) = 1. Such states might experimentally be approximated by using a pair of

strongly attenuated cw lasers whose frequencies are tuned in opposite directions by the random
amount ν and filtered by Gaussian filters with transmission function f1(ν) and f2(ν).

When ρmixed is used in the experimental setup shown in Fig. 1, the joint detection rate be-
tween two detectors D1 and D2 is proportional to the Glauber 2nd-order correlation function

G(2)(t1, t2) = Tr[ρmixedE(−)
1 (t1)E

(−)
2 (t2)E

(+)
2 (t2)E

(+)
1 (t1)], (10)

where E(+)
1 (t1) =

∫
dνa(ν)ei{k1z1−(Ω1+ν)t1}, the positive frequency component of the electric

field operator at detector D1, and E(+)
2 is defined similarly. By combining Eq. (9) and Eq. (10),

we finally obtain
G(2)(t1, t2) = 1. (11)

Physically, this means that the joint detection probabilities of two detectors do not depend on
time at all. In other words, even D1 detects a photon at t1, we have no information about when
D2 would click. The joint detection probability does not show timing information at all and,
therefore, is meaningless to discuss the dispersive effect with the two-photon mixed state. This
result tells us that coherence between two-photon probability amplitudes (i.e., entanglement) is
essential for the nonlocal dispersion cancellation effect.

5.2. A classical pulse pair

Let us now consider whether the nonlocal dispersion cancellation effect of Ref. [1] can be ex-
hibited by a classical pulse pair. First, assume two ultrafast pulses which are initially coincident
in time [1]. The frequency of each pulse can be defined as ω1 = Ω1 + ν1 and ω2 = Ω2 − ν2,
respectively. Here νi is the detuning frequency from the central frequency Ωi and the sub-
script i labels each pulse (i = 1,2). The wave number of the photon can then be expressed as
ki(Ωi ±νi) ≈ ki(Ωi)±αiνi + βiν2

i . Note that α and β are the first-order and the second-order
dispersion which are responsible for the wave packet delay and the wave packet broadening,
respectively.

After pulse 1 has propagated through the dispersive medium β1, see Fig. 1, the electric field
at the detector can then be written as

E1(t1,z1) =
∫ ∞

−∞
dν1

E0

2π
e−ν2

1 /2σ2
0 ei(k1(Ω1)+α1ν1+β1ν2

1 )z1e−i(Ω1+ν1)t1 , (12)

where E0 is a constant, σ0 is the bandwidth of the pulse, z1 is the distance between the light
source and the detector, and t1 is the detection time. E2(t2,z2) for pulse 2 is defined similarly.
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The intensity detected at D1 is I1(z1, t1) = |E1(z1, t1)|2 and is calculated to be

I1(z1, t1) =
E2

0

4π|a1|2 e−(α1z1−t1)2/2σ2
1 , (13)

where a2
1 = 1/2σ2

0 − iβ1z1 and σ2
1 = 2σ2

0 (1/4σ4
0 + β 2

1 z2
1). The intensity at D2 is calculated

similarly as

I2(z2, t2) =
E2

0

4π|a2|2 e−(α2z2−t2)2/2σ2
2 , (14)

where a2
2 = 1/2σ2

0 − iβ2z2 and σ2
2 = 2σ2

0 (1/4σ4
0 +β 2

2 z2
2).

The joint detection probability, i.e., the probability that two detectors D1 and D2 click si-
multaneously at times t1 and t2 = t1 + τ is then given as ηI1(z1, t1)I2(z2, t1 + τ), where η is a
constant related to the detection efficiency, and is calculated to be

P(τ) =
∫ ∞

−∞
dt1ηI1(z1, t1)I2(z2, t1 + τ) = Ce

− (τ−τ)2

2(σ2
1 +σ2

2 ) , (15)

where τ = α2z2 −α1z1 and C = ηE4
0/[(4π)2|a1|2|a2|2]

∫ ∞
−∞ exp[− 1

2 ( 1
σ2

1
+ 1

σ2
2
)t2

1 ]dt1.

The joint detection or the coincidence distribution P(τ) then has a total width

σ2
T = σ2

1 +σ2
2 = 2σ2

0 (1/2σ4
0 +β 2

1 z2
1 +β 2

2 z2
2), (16)

and for large distances and dispersions, Eq. (16) becomes

σ2
T ≈ 2σ2

0 (β 2
1 z2

1 +β 2
2 z2

2). (17)

Finally, the full width at half maximum value of the temporal width of P(τ) is given as

Δt ≈ 4
√

ln2σ0

√
β 2

1 z2
1 +β 2

2 z2
2. (18)

Since Eq. (18) depends on the summation of squares of individual dispersion values, nonlocal
dispersion cancellation is not possible using two classical pulses even in the case β1 = −β2.
Clearly, this is due to the local nature of classical fields [1]. Even if the two classical pulses are
anticorrelated in their central frequencies, the rest of frequency components of pulse 1 and pulse
2 do not have spectral nor temporal correlations. As a result, the local dispersion experienced
by pulse 1 cannot be canceled by the local dispersion experienced by pulse 2.

The effect of dispersion on the joint detection probability of the classical pulse pair can be
easily described using Fig. 5(a). The detection probability as a function of time for a short
pulse (pulse 1) after it has propagated through a positive dispersion medium +β is given as
P1(t1). The detection probability for pulse 2 after it has propagated through a negative disper-
sion medium −β is given as P2(t2). P1(t1) and P2(t2) show the wave packet broadening due to
Eq. (13) and Eq. (14), respectively. The result in Eq. (18) shows that the joint detection proba-
bility Pc(t1 − t2) would then be much broader than P1(t1) and P2(t2) individually as depicted in
Fig. 5(a). Note that this case is referred in Fig. 5(a) as (+β ,−β ). Exactly the same results are
obtained for other cases, namely, (+β , +β ), (−β , +β ), and (−β ,−β ).

5.3. A frequency-anticorrelated mixture of classical pulse pairs

Let us now consider a frequency-anticorrelated mixture of classical pulse pairs. Here we imag-
ine many frequency-anticorrelated pulse pairs, each with a random amount of detuning ν from
the central frequency Ω. Thus, a pulse pair is always frequency-anticorrelated but no pairs have
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t1 - t2

(+β, 0)

(+β, +β)

(+β, −β)

t1 t2

P1 (t1) P2 (t2) Pc (t1-t2)(a)

(b)

(c)

(d)

+β −β (+β, −β)

t1 - t2

t1 - t2

t1 - t2

τ+1τ−1 τ0

Pc (t1-t2)

τ+1τ−1 τ0

τ+1τ−1 τ0

Fig. 5. The joint detection probability for a number of cases involving classical pulse pairs
under group velocity dispersion. (a) Detection probabilities for pulse 1, P1(t1), and pulse 2,
P2(t2), after they have propagated through +β and −β media, respectively. The joint de-
tection probability Pc(t1−t2) is always broader then the single detection probabilities. Note
that (+β ,−β ) refers to the case in which pulse 1 (pulse 2) goes through the positive (the
negative) dispersive medium. Figures (b), (c), and (d) show the joint detection probabili-
ties for a frequency-anticorrelated mixture of classical pulse pairs. Note that (+β ,0) refers
to the case in which pulse 1 goes through the positive dispersion medium while pulse 2
goes through a non-dispersive medium. (+β ,+β ), and (+β ,−β ) have similar meanings. If
spectrally identical sources are used, the the overall joint detection probabilities cannot be
smaller than the individual probabilities. See text for details.

the same amount of detuning. We also assume a sufficiently broadband Gaussian filters are
placed in front of the detectors.

Clearly, the joint detection probability for each pulse pair is described by Eq. (18). However,
since each pulse pair has different central frequencies than the previous/next ones, the coinci-
dence peak for each pulse pair, after they have propagated through the dispersion media, would
then appear at different times due to the dispersion.

The coincidence peak corresponding to the m’th pulse pair occurs at

τm =
z1

v1(Ω+mν)
− z2

v2(Ω−mν)
, (19)

where m is an integer, vi is the group velocity of pulse i (i = 1,2), and zi is the distance between
the source and the detector. Note that τm, the time at which the coincidence peak corresponding
to the m’th pulse pair occurs, is simply the relative group delay between the two pulses. In
what follows, we will explore how the statistical distribution of τm is affected by the dispersive
media.

CASE I (+β , 0): Consider the case that pulse 1 is sent to a positive dispersive medium, +β ,
and pulse 2 is sent to a nondispersive medium (e.g., air). In this case, the group velocity of
pulse 2 can be approximated as v2(Ω−mν) ≈ c, where c is the speed of light in the air, and
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Eq. (19) can be rewritten as τm = z1/v1(Ω+mν)− z2/c. When the cental frequency of pulse 1
is tuned to Ω±ν (ν > 0) from Ω, the coincidence peak is shifted from τ0 = z1/v1(Ω)− z2/c
to τ±1 = z1/v1(Ω±ν)− z2/c. Since the group delay of pulse 1 monotonously increases as the
frequency increases for the positive dispersion medium, the group delays corresponding to the
three coincidence peaks satisfy the relation, τ−1 < τ0 < τ+1, as shown in Fig. 5 (b).

We can then define the measure of the width of the coincidence distribution as

Δτ(+β ,0) ≡ τ+1 − τ0 =
z1

v1(Ω+ν)
− z1

v1(Ω)
. (20)

When the coincidence measurement is done for a sufficiently long time, it will take the form of
a broadened Gaussian envelope (due to the Gaussian filters) as shown in Fig. 5(b).

CASE II (+β , +β ): Let us now consider the case that pulse 1 and pulse 2 are both sent to
positive dispersion media. Considering that the pulse pair is frequency-anticorrelated in their
central frequencies and the dispersion is positive for both pulses, the relative group delays can
be calculated using Eq. (19) as τ0 = z1/v1(Ω)−z2/v2(Ω) and τ+1 = z1/v1(Ω+ν)−z2/v2(Ω−
ν). The coincidence width is then calculated to be

Δτ(+β ,+β ) = τ+1 − τ0 = Δτ(+β ,0)+
z2

v2(Ω)
− z2

v2(Ω−ν)
, (21)

where Δτ(+β ,0) is defined in Eq. (20). Since pulse 2 propagates through the positive disper-
sion medium, v2(Ω) < v2(Ω−ν) and, therefore, Δτ(+β ,+β ) > Δτ(+β ,0). This case, shown
in Fig. 5(c), therefore gives broader coincidence distribution than the (+β ,0) case shown in
Fig. 5(b).

CASE III (+β , −β ): Finally we discuss the case in which pulse 1 propagates through the
positive dispersion medium while pulse 2 propagates through the negative dispersion medium.
Remember that the pulse pair mixture is frequency-anticorrelated and each pair has random
detuning. Since pulse 2 propagates through the negative dispersion medium, v2(Ω) > v2(Ω−ν)
and, therefore, Δτ(+β ,−β ) = τ+1−τ0 = Δτ(+β ,0)+z2/v2(Ω)−z2/v2(Ω−ν) < Δτ(+β ,0).
As a result, the relative group delay τm does not increase much from the τ0 value even with
large m’s. The coincidence peak, therefore, occurs mostly at around τ0 = z1/vg(Ω)− z2/vg(Ω)
as shown in Fig. 5(d).

Thus, for the frequency-anticorrelated mixture of classical pulse pairs, we arrive at the rela-
tion,

Δτ(+β ,+β ) > Δτ(+β ,0) > Δτ(+β ,−β ). (22)

One might try to interpret the above result as showing, even with the frequency-anticorrelated
mixture of classical pulse pairs, it is possible to achieve the nonlocal dispersion cancellation
effect. This, however, is an erroneous conclusion because the minimum coincidence distribution
in time is limited by Eq. (18), depicted in Fig. 5(a), which is quite different from the quantum
nonlocal dispersion cancellation effect in Eq. (6).

Therefore, the degree of the two-photon coincidence due to the nonlocal dispersion cancella-
tion effect, Eq. (6), can be increased beyond the limit attainable without entanglement, Eq. (18),
and this result is confirmed in our experimental result shown in Fig. 4.

6. Conclusion

We have reported an experimental demonstration of the quantum nonlocal dispersion cancel-
lation effect of Ref. [1] in which the signal photon is subject to positive dispersion while its
entangled twin photon, remotely located, is subject to negative dispersion. In this work, for the
first time, we have explicitly demonstrated the narrowing of the joint detection probability func-
tion by spectrally resolving the dispersion-broadened two-photon wave packet and the amount
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of narrowing has shown to be consistent with the theoretical calculations based on the quantum
nonlocal dispersion cancellation effect. We have also shown theoretically that classical states,
e.g., a two-photon mixed state and a frequency-anticorrelated mixture of classical pulse pairs,
cannot demonstrate the nonlocal dispersion cancellation effect. We expect that the nonlocal dis-
persion cancellation effect will play an important role in fiber-based quantum communication
and quantum metrology applications as the method to remotely remove/compensate unwanted
dispersive effects on nonclassical wave packets.

Note that, in our present experiment, although the entangled photon state which is capable of
exhibiting nonlocality in the sense of the Bell inequality violation is used, the nonlocality test
was not performed (nor intended). It would therefore be interesting to consider the possibility
of introducing space-like separated measurements in observing the nonlocal dispersion cancel-
lation effect, similarly to the test of Bell’s inequality under strict locality conditions reported
in Ref. [28]. Such an experiment, requiring a different kind of projection measurement with
space-like separation, would be a new test of quantum nonlocality and we believe that such a
test is feasible with currently available technologies.
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