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Abstract. In the Aharonov–Albert–Vaidman (AAV) weak measurement, it is
assumed that the measuring device or the pointer is in a quantum mechanical
pure state. In reality, however, it is often not the case. In this paper, we generalize
the AAV weak measurement scheme to include more generalized situations
in which the measuring device is in a mixed state. We also report an optical
implementation of the weak value measurement in which the incoherent pointer
is realized with the pseudo-thermal light. The theoretical and experimental
results show that the measuring device under the influence of partial decoherence
could still be used for amplified detection of minute physical changes and is
applicable for implementing the weak value measurement for massive particles.
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1. Introduction

In von Neumann’s measurement model, the process of measurement is considered as an
interaction between the quantum system to be measured and the measuring device (or
the pointer) with the assumption that the pointer state is initially prepared with a small
uncertainty [1]. The projection postulate of the quantum theory, justified by von Neumann’s
measurement model, states that the outcome of a measurement on a quantum system must be
one of the eigenvalues of the system’s observable. The weak value introduced by Aharonov,
Albert and Vaidman, however, is quite peculiar in that the measurement outcomes of the weak
value may lie well outside the normal range of the eigenvalues of the measurement operator [2].
The weak value measurement, nevertheless, does not violate standard quantum theory and the
effect is understood to be due to quantum interference of complex amplitudes [3].

The Aharonov–Albert–Vaidman (AAV) weak value measurement is accomplished in
two steps: the weak measurement followed by postselection. The postselection step is the
standard projection measurement (i.e. strong measurement) but, for the weak measurement,
the measuring device or the pointer is assumed to be in a quantum mechanical pure state [2, 3].
In the case of quantum mechanical particles with mass whose center-of-mass coordinates are
considered as the pointer for the measuring device, it becomes extremely difficult to achieve the
measuring device in a pure state because the coupling to the environment causes decoherence
of the pointer state as demonstrated, for example, in decoherence of matter waves [4]–[6] and
degradation of an atom laser beam [7]. It is thus not surprising that the AAV weak value
measurement to date has been implemented only with light whose spatial or temporal coherence
can be used to represent the pointer in a pure state [8]–[16]. One is then led to a natural question
whether the AAV weak value measurement must be performed with a pure pointer state and,
recently, it has been shown theoretically that the AAV weak value measurement can indeed be
performed with an arbitrary pointer state [17].

In this paper, we generalize the original AAV weak value measurement to include a more
generalized situation in which the measuring device is in a mixed state. In particular, we consider
the AAV weak value effect for a Gaussian-shaped pointer state whose degree of coherence
can be varied continuously. (Our work therefore can be viewed as an experimentally relevant
specific case of the general result reported in [17].) We then report an optical implementation of
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the weak value measurement in which the Gaussian-shaped pointer with variable decoherence is
realized with the pseudo-thermal light. The theoretical and experimental results suggest that the
measuring device under the influence of partial decoherence, i.e. the pointer state with partial
coherence (or a density matrix with nonzero off-diagonal elements), could still be used for
amplified detection of weak effects.

2. Theory

2.1. Weak value measurement with a coherent measuring device

We start with a brief description of the AAV weak value measurement [2, 3]. The impulse
interaction Hamiltonian between the pointer and the system, whose observable Â is to be
measured, is given in general as

Ĥ = δ(t − t0) p̂ Â, (1)

where p̂ represents the momentum operator for the measuring device (with the conjugate
position operator q̂) and t0 is the time of measurement (i.e. interaction). In the AAV weak value
measurement [2, 3], the system is prepared in a pure state |ψin〉. The initial state of the pointer
(i.e. the measuring device) is also assumed to be in a pure state (q-representation) as

|φin〉 =

(
2

πw2
0

)1/4 ∫
dq exp(−q2/w2

0)|q〉, (2)

where w0 quantifies the pointer spread. With the inner product 〈p|q〉 = exp(−ipq/h̄)/
√

2π h̄,
the pointer state in equation (2) can be rewritten in p-representation as

|φin〉 =

(
w2

0

2π h̄2

)1/4 ∫
dp exp(−w2

0 p2/4h̄2)|p〉. (3)

After the interaction in equation (1), the quantum state of both the system and the pointer
evolves into

exp(−i p̂ Â/h̄)|ψin〉|φin〉. (4)

If we now make a projection measurement on the system in the |ψ f 〉 basis (i.e. postselection of
the system having the quantum state |ψ f 〉), the pointer state is found to be

〈ψ f | exp (−i p̂ Â/h̄)|ψin〉|φin〉 ' (〈ψ f |ψin〉 − i p̂〈ψ f | Â|ψin〉/h̄ + · · ·)|φin〉

' N 〈ψ f |ψin〉

∫
dp exp

(
−
w2

0 p2 + 4iAw p

4h̄2

)
|p〉, (5)

where N ≡ (w2
0/2π h̄2)1/4 and Aw is the weak value defined as [2, 3]

Aw ≡
〈ψ f | Â|ψin〉

〈ψ f |ψin〉
. (6)

Note that equation (5) has been derived with the assumption

max
n=2,3..

∣∣∣∣∣〈ψ f | Ân
|ψin〉(1p/h̄)n

〈ψ f |ψin〉

∣∣∣∣∣ � |1p Aw/h̄| � 1, (7)

where 1p is the spread of the pointer state in the p-represenation.
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Using equations (2) and (3), we can re-write equation (5) as(
2

πw2
0

)1/4

〈ψ f |ψin〉

∫
dq exp

[
−
(q − Aw)

2

w2
0

]
|q〉. (8)

The essence of the weak value measurement is illustrated in equation (8): the pointer displays,
as an outcome of the measurement, the weak value Aw, which may be much larger than any
eigenvalues of Â if |ψin〉 and |ψ f 〉 are nearly orthogonal to each other.

Although approximations were used to derive equation (8), it is in fact possible to calculate
the effect of the AAV weak value measurement without any approximation. By expanding |ψin〉

and |ψ f 〉 in the eigenbasis of Â as |ψin〉 =
∑

k αk|ak〉 and |ψ f 〉 =
∑

l βl |al〉, the probability
distribution Pψ(q) of the pointer q is explicitly calculated to be

Pψ(q)=

∣∣∣〈q|〈ψ f |Û |ψin〉|φin〉

∣∣∣2

=

∣∣∣∣∣
(

2

πw2
0

)1/4 ∑
k

αkβ
∗

k exp

[
−
(q − ak)

2

w2
0

]∣∣∣∣∣
2

=

√
2

πw2
0

∑
k, j

αkβ
∗

kα
∗

jβ j exp

[
−
(q − ak)

2 + (q − a j)
2

w2
0

]
, (9)

where Û = exp(−i p̂ Â/h̄), a j and ak are the eigenvalues of Â, and we have used the
orthonormality condition 〈al |ak〉 = δl,k . Note that, in the weak value measurement limit shown
in equation (7), Pψ(q) in equation (9) approximates to a single Gaussian peaked at the weak
value Aw.

2.2. Weak value measurement with an incoherent measuring device

So far, we have considered the case in which the measuring device is in a pure state, i.e. the
pointer spread is completely coherent as shown in equation (2). Let us now generalize the
problem by considering that the measuring device (having the same pointer spread w0) is no
longer in a pure state, but rather in a mixed state with some partial coherence quantified withwc.
The pointer state is then expressed as a density matrix

ρφ =

√
2

πw0wc

∫
dq0 dq ′ dq ′′ exp

[
−

q2
0

w2
0

]
exp

[
−
(q ′

− q0)
2

w2
c

]
exp

[
−
(q ′′

− q0)
2

w2
c

]
|q ′

〉〈q ′′
|, (10)

and the initial system-pointer quantum state is described as

|ψin〉ρφ〈ψin|. (11)

After the weak measurement, the initial system-pointer density matrix |ψin〉ρφ〈ψin| is
evolved due to the interaction Hamiltonian in equation (1) into

Û |ψin〉ρφ〈ψin|Û
†. (12)

Making a projection measurement on the system in the |ψ f 〉 basis (i.e. postselecting the system
having the state |ψ f 〉), the pointer state is found to be

ρ f = 〈ψ f |Û |ψin〉ρφ〈ψin|Û
†
|ψ f 〉

=

∑
k, j,l,m

β∗

l αkα
∗

jβm〈al |Û |ak〉ρφ〈a j |Û
†
|am〉. (13)
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Figure 1. Schematic of the experiment. The incoherent pointer state is realized
with a pseudo-thermal light source whose transverse spatial coherence can be
varied. An He–Ne laser beam is focused on an RD with a movable lens L1 and the
scattered light is collimated with another lens L2. BS1 and BS2 are 50/50 beam
splitters. The transverse spatial coherence of the beam is measured with detectors
D1 and D2 and is used for determining γ , the degree of partial coherence of the
pointer state. P1 and P2 are polarizers for state preparation and postselection,
respectively. The weak measurement occurs at the tilted quartz plate Q.

The probability distribution for the pointer Pρ(q) is then calculated as

Pρ(q)= 〈q|ρ f |q〉

=

√
2

πw0wc

∑
k, j

αkβ
∗

kα
∗

jβ j

∫
dq0 exp

[
−

q2
0

w2
0

−
(q − ak − q0)

2

w2
c

−
(q − a j − q0)

2

w2
c

]

=

√
2

π(2w2
0 +w2

c)

∑
k, j

αkβ
∗

kα
∗

jβ j exp

[
w−2

0

(
−
(q − ak)

2

γ 2
−
(q − a j)

2

γ 2
+
(2q − ak − a j)

2

γ 4 + 2γ 2

)]
,

(14)

where we have used the orthonormality conditions 〈al |ak〉 = δl,k and 〈a j |am〉 = δ j,m . Note that
the degree of partial coherence is defined as γ ≡ wc/w0.

Equation (14) shows that the weak value effect should still be observable even though the
measuring device (i.e. the pointer) is in a mixed state whose degree of partial coherence is
quantified with γ . Note that the pointer is effectively in a pure state in the limit γ � 1 and, in
this limit, equation (14) approximates to equation (9).

3. Experiment

The weak value measurement setup that incorporates the pointer in a mixed state is
schematically shown in figure 1. The system state is the polarization state of the photon
(analogous to a spin-1/2 particle) and is assumed to be in a pure state. The transverse position
of the photon corresponds to the pointer (i.e. the measuring device) for measuring the system
state [3, 8].
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The incoherent pointer state is realized with the pseudo-thermal light source based on
scattering of a focused laser beam (an He–Ne laser operating at 632.8 nm) at a rotating ground
disc (RD) [18]. Because the scattered light at RD is spatially incoherent in the transverse
direction of the beam, the pointer state can be expressed in the form of equation (10). The
focusing (L1) and collimating (L2) lenses have 30 and 75 mm focal lengths, respectively. By
moving L1 longitudinally, thereby changing the beam size on the RD, the degree of transverse
spatial coherence of the collimated beam can be varied. Therefore, we can easily adjust the
degree of partial coherence γ of the pointer state in equation (14) by simply moving the focusing
lens L1. The collimated beam is then split into two by a beam splitter (BS1); one beam is for
the weak value measurement and the other is for characterizing the pointer state.

For the weak value measurement, the photon is prepared in a definite polarization state with
polarizer P1. An iris placed after P1 defines the e−2 beam waist radiusw′

0 = 0.697 mm. The lens
L3 ( f = 100 mm) then focuses the beam so that the beam waist is w0 = λ f/(πw′

0)= 28.9µm
at the focus. The weak measurement on the system (i.e. the polarization state of the photon) is
then implemented with a 0.5 mm thick quartz plate Q with its optic axis oriented vertically.
The quartz plate Q causes a small polarization-dependent displacement between the two
orthogonal polarization components due to the birefringence. The measurement operator Â that
corresponds to this experimental situation can be expressed as

Â = a|V 〉〈V |, (15)

where a is the expected spatial displacement given, in this case, as a = 1.316µm. Clearly, the
expected displacement is much smaller than the beam widthw0 and, therefore, the quartz plate Q
acts as the weak measurement operator on the system [3, 8]. In order to ensure that the incoming
polarization of the photon is not changed by Q, i.e. the net phase difference of 2π between the
vertical and horizontal polarizations of the photon, Q was tilted (about the optic axis) to 43.5◦.

After the weak measurement by quartz plate Q, the postselection measurement (on
polarization) is implemented by the polarizer P2 placed at the focus of L3. Finally, an imaging
lens L4 ( f = 50 mm) and a CCD camera are used to measure the transverse spatial profile of
the photon at the P2 location.

4. Results and analysis

4.1. Characterizing the incoherent measuring device (pointer state)

As mentioned earlier, we can vary the transverse spatial coherence of the collimated beam by
changing the beam size on the RD and the degree of transverse spatial coherence is directly
related to the degree of partial coherence γ in equation (14). Therefore, the first step in exper-
imentally demonstrating the weak value measurement with an incoherent measuring device is
to properly and accurately characterize the transverse spatial coherence of the collimated beam.

In the experiment, the light scattered at the RD is collimated with L2. Beam splitter BS2
then splits the collimated beam: the transmitted beam is used for the weak value measurement
and the reflected beam is used for measuring the transverse spatial coherence of the pointer,
see figure 1. The degree of transverse spatial coherence of the beam is measured with a
Hanbury–Brown–Twiss-type interferometer, consisting of a 50/50 beam splitter (BS2) and two
detectors D1 and D2. The detectors D1 and D2 are multi-mode fiber coupled so that the effective
diameter of the detectors is 62.5µm, the core diameter of the fiber. The fiber connected to D1
can be scanned and the photocurrents from the detectors D1 and D2 are digitized and stored on
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Focusing

Figure 2. The normalized cross-correlation, C(x), as a function of D1
position, x , shows the degree of transverse spatial coherence of the collimated
beam. The measured e−2 widths w′

c are 1.42, 0.93, 0.60 and 0.28 mm. The wc

values for the weak value measurement can be calculated from w′

c and they are
59.0, 38.5, 25.0 and 11.7µm, respectively. The degree of partial coherence γ can
then be calculated using the relation γ = wc/w0. The pointer spread w0 is kept
constant at 28.9µm. See text for details.

a computer. The cross-correlation between the two split modes (of BS2) is then calculated using
the ac components of the digitized photocurrents, 1I (t), using the relation

C(x)=
〈1I1(x, t)1I2(t)〉t√

〈(1I1(x, t))2〉t

√
〈(1I2(t))2〉t

= g(2)(x)− 1, (16)

where subscripts 1 and 2 refer to detectors D1 and D2, respectively, and 〈. . .〉t represents time
averaging. Note that C(x) is a direct measurement of the deviation from unity for the normalized
second-order correlation function g(2)(x) [19] .

The experimental results are shown in figure 2. The cross-correlation measurements show
that defocusing of L1 causes reduction of the transverse spatial coherence of the collimated
beam. The measured e−2 widths w′

c are 1.42, 0.93, 0.60 and 0.28 mm, depending on the L1
position. Because the weak value measurement setup uses lens L3 ( f = 100 mm) to focus the
beam, see figure 1, the measured value w′

c should be converted to the value relevant in the
weak value measurement setup using the relation wc = w′

cw0/w
′

0. As discussed in the previous
section, w′

0 = 0.698 mm and w0 = λ f/(πw′

0) = 28.9µm. The degree of partial coherence γ in
equation (14) is then calculated using the relation γ = wc/w0. The γ values are 2.04 (focusing),
1.33 (1 mm defocusing), 0.865 (2 mm defocusing) and 0.404 (5 mm defocusing).

4.2. Weak value measurement with an incoherent measuring device

Since the degree of partial coherence γ is determined for the measuring device (i.e. the pointer
state), we now can proceed to test weak value measurement with an incoherent measuring
device. We start by re-writing the general result in equation (14) using experimentally relevant
parameters.
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Figure 3. Weak value measurement with an incoherent measuring device. (a) and
(c) are experimental data and (b) and (d) are corresponding theoretical results
plotted using equation (17). For (a) and (b), ε = 1.00 × 10−3 rad. For (c) and (d),
ε = 2.79 × 10−2 rad. All plots are normalized to unity and vertically shifted for
clarity. For (b), the peak probabilities are 9.98 × 10−7, 2.74 × 10−6, 8.47 × 10−6

and 5.52 × 10−5 for γ values of 2.04, 1.33, 0.865 and 0.404, respectively. For (d),
the peak probabilities are 1.08 × 10−5, 1.63 × 10−5, 2.52 × 10−5 and 7.18 × 10−5

for γ values of 2.04, 1.33, 0.865 and 0.404, respectively.

In the experiment, the initial and final polarization states of the photon are assumed linear
(P1 and P2 are linear polarizers) so that |ψin〉 = cosα|H〉 + sinα|V 〉 and |ψ f 〉 = cosβ|H〉 +
sinβ|V 〉. Since |ψin〉 and |ψ f 〉 should be almost orthogonal to observe the weak value effect, P1
and P2 angles are set at α = π/4 and β = −π/4 + ε, respectively. Also, the eigenvalues of the
observable, corresponding to the expected beam shift for each polarization state, are aH = −a
and aV = 0. Under these conditions, equation (14) can be re-written as

Pρ(q)∝ cos2 β exp

[
w−2

0

(
−

2(a + q)2

γ 2
+

4(a + q)2

γ 4 + 2γ 2

)]
+ sin2 β exp

[
w−2

0

(
−

2q2

γ 2

4q2

γ 4 + 2γ 2

)]
+ sin 2β exp

[
w−2

0

(
−

a2 + 2aq + 2q2

γ 2
+
(a + 2q)2

γ 4 + 2γ 2

)]
. (17)

We have performed the weak value measurement with the incoherent pointer for several
values of γ , which characterizes the degree of partial coherence of the pointer (i.e. the measuring
device), and for two values of ε, which determines the 〈ψ f |ψin〉 value. Note that, since the weak
value Aw does not make sense if 〈ψ f |ψin〉 = 0, ε should not be zero. (If 〈ψ f |ψin〉 = 0, the weak
value is not defined by the definition of equation (6), and the assumption of equation (7) cannot
be satisfied.) To obtain a large weak value Aw, however, ε should be close to zero.

The experimental results and corresponding theoretical results are shown in figure 3. In
experiment, the peak position of the measured transverse spatial profile of the beam on the CCD
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γ

Figure 4. Weak value amplification as a function of γ . Experimental data points
are from figure 3(c) for ε = 2.79 × 10−2 rad. For each data point, the error
bars are smaller than the solid circle. The solid lines are due to the theoretical
result in equation (17). The upper and lower solid lines are for the weak value
amplification calculated for ε = 1.92 × 10−2 and 3.67 × 10−2 rad, respectively.
These ε values correspond to relative angle setting errors of ±0.5◦ between
polarizers P1 and P2 (The angle setting error of ±0.5◦ comes from the fact that
our rotation mounts were graded in 2◦ increments.).

represents the weak value Aw. The experimental results show that the weak value Aw, which is
larger than the eigenvalue of the operator aH = −a = −1.316µm, is observable even with the
pointer (measuring device) in a mixed state if the pointer has some degree of partial coherence,
i.e. nonzero off-diagonal elements of the density matrix representing the pointer state. Note also
that the larger the degree of partial coherence γ , the larger the resulting weak value Aw.

The experimental data also show that if ε is too close to zero (ε = 1.00 × 10−3 rad), the
weak value is not well defined, see figure 3(a). The spatial profile shows two peaks when the γ
is large enough, but it reduces to a single Gaussian peak centered nearly at zero when γ is much
smaller than 1. This clearly is due to the lack of quantum interference.

The weak value effect is more clearly visible for a slightly larger value of ε, ε = 2.7 ×

10−2 rad. As shown in figure 3(c), the weak value effect is reduced gradually as γ gets smaller.
Even for a rather small value γ = 0.404 (an incoherent pointer with small partial coherence),
a rather large weak value Aw = −4.58 ± 0.0742µm is observed. The experimental results,
figures 3(a) and (c), are in good agreement with the theoretical plots, figures 3(b) and (d),
calculated using equation (17).

It is interesting to note that, in figure 3, smaller uncertainties (widths of the peaks) are
obtained with smaller values of γ . It should also be noted that the smaller the value of γ , the
larger the peak probability (see the caption of figure 3). This implies that the weak value effect
is strongly postselective: to obtain a larger weak value amplification effect, the probability of
the event must be sacrificed.

Finally, the weak value effect as a function of γ is summarized in figure 4, which shows
that the amplification (defined as the ratio between the peak position of the spatial profile and the
expectation value of the observable Â, i.e. 〈ψin| Â|ψin〉 = −a/2 = −0.658µm) depends heavily
on γ and ε. For γ � 1, the pointer state becomes effectively pure so that the amplification
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factor is bounded to a specific value. In the intermediate range of γ , the amplification factor
increases as γ gets larger. We would like to point out that the weak value amplification can still
be observed even for γ < 1. Of course, if the pointer is completely incoherent (i.e. γ = 0), no
weak value effect can occur (i.e. no amplification).

5. Conclusion

We have generalized the AAV weak value effect to include the situations in which the measuring
device (the pointer) is in a mixed state and have demonstrated the generalized weak value effect
in an optical experiment in which the pointer in a mixed state is realized with the pseudo-
thermal light source of a varying degree of partial spatial coherence. We have also introduced
an experimentally measurable quantity that effectively quantifies the partial coherence of the
pointer. Our results show that the pointer state, no longer in a pure state but in a mixed state
(with some partial coherence) can still exhibit the weak value effect and thus may be used for
amplified detection of very small physical changes. The result reported in this paper should be
directly applicable to weak value measurement schemes involving a beam of massive particles
whose pointer states (the transverse profile of the beam) cannot be expected to be in a pure state
due to the decoherence-causing interactions, such as inter-particle collisions, strong coupling
with the environment, etc.
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