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Experimental implementation of the universal transpose operation using the
structural physical approximation
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The universal transpose of quantum states is an antiunitary transformation that is not allowed in quantum
theory. In this work, we investigate approximating the universal transpose of quantum states of two-level systems
(qubits) using the method known as the structural physical approximation to positive maps. We also report its
experimental implementation in linear optics. The scheme is optimal in that the maximal fidelity is attained and
also practical as measurement and preparation of quantum states that are experimentally feasible within current

technologies are solely applied.
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The postulate of quantum theory that global dynamics of
given quantum systems must be unitary is the constraint given
to legitimate operations on quantum states. The general class of
quantum operations is then found in the reduced dynamics of
subsystems and mathematically characterized by completely
positive (linear) maps over Hilbert spaces [1]. In particular,
positive but not complete positive maps, simply called positive
throughout, are of unique importance in quantum information
theory that, for any entangled state, there exists a positive map
that determines whether or not the given state is entangled [2].

The fact that there are impossible operations in quantum
theory leads in a natural way to the problem of building
optimal approximate quantum operations. Moreover, impos-
sible operations in quantum theory are, in general, not only
of fundamental and theoretical interest to characterize com-
putational and information-theoretic capabilities of quantum
information processing, but also of practical importance in
the implementation of approximate quantum operations for
applications.

Systematic approximation to positive maps, known as the
structural physical approximation (SPA), has been proposed
in Ref. [3] in the context of detecting the entanglement of
unknown quantum states, i.e., even before identifying given
quantum states through the state tomography. The initial
proposal of the SPA assumed collective measurement for
spectrum estimation that requires (i) quantum memory that
stores quantum states in the quantum level for a while and
(ii) coherent quantum operations that allow general manipu-
lation of copies of quantum states [4]. Interestingly, however,
it was shown recently that the SPA to some positive maps
correspond to quantum measurement [5]. Furthermore, it
has been recently conjectured that SPAs to positive maps
are, in general, entanglement breaking, meaning that the
actual implementation of the SPA would be much simpler
than originally proposed [6]. Note that entanglement-breaking
channels can be constructed with the measurement and
preparation of quantum states [7]. The conjecture has been
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extensively tested with known examples of positive maps,
without a counterexample, for instance, in Refs. [6,8].

In this work, we report the linear optical implementation of
approximating the transpose operation for a two-dimensional
quantum system (i.e., photonic qubit) using the SPA based
on the measurement and preparation of quantum states. Our
SPA scheme for the universal transpose operation is optimal
in that the maximum fidelity is attained and is also practical
as only single-copy level measurement and preparation of
quantum states are applied. Our work shows that SPAs to
positive maps are experimentally feasible within present-day
technology. The motivation behind the transpose operation
being particularly chosen to demonstrate the SPA based on the
measurement and preparation of quantum states is twofold. On
one hand, in the side of further applications, the transpose to a
subsystem is the well-known criteria that efficiently detects
useful entanglement (i.e., entangled states having negative
eigenvalues after the partial transpose) [2,9]. Since any
approximate map that can experimentally detect entanglement
via the SPA can always be factorized into a convex combination
of another SPA to nonphysical operations for individual
systems [10], our work immediately implies the feasibility of
experimental implementation of the entanglement detection
via SPAs. On the other hand, in the fundamental point of
view, the transpose represents the antiunitarity in the symmetry
transformation in quantum theory [11]. Since any antiunitary
is composed of a unitary and the transpose, the transpose is the
only symmetry transformation that is not allowed in quantum
theory.

Let us first briefly describe the theory behind the SPA based
on the measurement and preparation of quantum states [6].
The SPA to the transpose T of a d-dimensional quantum state
o, in general, works by admixing the complete contraction
Dlo] = tr[o]1/d to the positive map,

T —T=(-pT+ pD,

such that the resulting map T is completely positive. The
minimal p that brings the complete positivity is known as
p =d/(d + 1). From the well-known isomorphism between
states and channels in Ref. [12], the channel T _corresponds
to the so-called Jamiolkowski state p7 = [1 ® T](|¢pF) (™)
where [¢T) =Y, lii)/+/d. If the state p7 1s separable, then
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the channel T is entanglement breaking, meaning that the
channel can be described by the measurement and preparation
of quantum states [7].

Consider now the approximate transpose of a qubit state
p. In this case, the Jamiolkowski state is p7 = (|¢pF)(¢T| +
167) (b~ |+ [T ) (YT /3, where [¢7) = (|00) — [11))/v/2
and |¥T) = (]01) + |10))/ﬁ. The state is separable, having
the following separable decomposition:

4
1
P=7 ; |06) (vel ® |g) (vl (1)
where the vectors |v;) are normalized and given by
iein2/3 ieiﬂ2/3
lvi) o [0) + o n 1), fv2) o |0) — PRy 1),
jeim2/3 jeim2/3
lvs) o [0) + PR 1), fva) o |0) — =T ).

Using the Jamiolkowski isomorphism [12], the SPA to the
transpose of a given qubit state p can be expressed in terms of
the above vectors as

4

TM[p] = o

1 * *

[§|vk)(vk!p] k) (el 2)
k=1
where the superscript (M) denotes that the scheme is measure-
ment based and |v}) is the complex conjugate of |v;). The set of
positive operators {|v]){v{|/2} defines a properly normalized
measurement due to the trace-preserving property of the
channel 7™ Then, Eq. (2) can be interpreted as carrying out
the approximate transpose of p in two steps: (i) measuring
the state p in the basis |v;) with equal probabilities for
k = 1,2,3,4, and (ii) depending on the measurement outcome,
preparing the corresponding state |vg). The schematic diagram
of Eq. (2) is shown in Fig. 1 where the two-step operation is
denoted as T(M) fork = 1,2,3,4.

The maximum fidelity that can be achieved by the SPA
to the transpose operation, T™_ can be calculated by consid-
ering a pure qubit state |{) and is given as

F = [Ty (W NT™[y) (w1l = 2/3 ~ 0.666.  (3)

It should be immediately clear from the above result that our
scheme is optimal in that the maximum fidelity of 2/3 can be
achieved [13].

Let us now describe the linear optical realization of the
SPA to the transpose shown in Eq. (2). To prepare a single-
photon polarization qubit p, we made use of the heralded
single-photon source based on spontaneous parametric down
conversion (SPDC). A 2-mm-thick type-II BBO crystal was
pumped by a 405 nm diode laser operating at 100 mW, pro-
ducing a pair of orthogonally polarized 810 nm photon pairs.
Conditioned on the detection of the vertically polarized trigger
photon, the horizontally polarized signal photon is prepared
in the single-photon state (i.e., heralded single-photon state).
The polarization state of the heralded single photon can then
be transformed to an arbitrary state by using a set of half-
and quarter-wave plates, i.e., the single-photon polarization
qubit [14]. Using 10 nm full width at half maximum bandpass
filters in front of both the trigger and the signal detectors, we
observed the coincidence rate around 4 kHz.
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FIG. 1. (Color online) (a) The scheme in Eq. (2) is shown. For
an input qubit state p, an operation f’,fM) for k = 1,2,3,4 is randomly
applied, so that the state results in the (classical) equal mixture of the
four possibilities. (b) Each T"k(M) fork = 1,2,3,4 denotes the operation
composed by measurement and state preparation. In our experimental
setup, p is a polarization state of a single photon. For the measurement
and preparation of states, wave plates (WP) and a polarizer (P) are
used. The detector and the single-photon source in the measurement
and the state preparation stages, respectively, become superfluous
in our experiment and thus were not implemented. See the text for
details.

To implement the approximate transpose operation 7,
as shown in Eq. (2), the measurement and preparation of
the single-photon polarization qubit in four different settings
(randomly chosen with equal probability) are required. The
ideal approximate transpose operation 7™ is therefore
composed of four Tk( ) (k =1,2,3,4) and each Tk( ) operation
(randomly chosen with equal probability) consists of particular
measurement and state preparation (see Fig. 1). For each T",((M) ,
the measurement in one basis |v}) is performed by setting wave
plates in such a way that the incoming photonic polarization
qubit p;, passes the polarizer with probability (v}|pi|v}) and
then results in, due to the projection at the polarizer, the
polarization state |H). Once the input single-photon qubit
has passed the polarizer (i.e., projection measurement has
occurred), the corresponding state |vg) is prepared from the
state |H) using another set of wave plates [see Fig. 1(b)].
Note that, since we employ the triggered single-photon source
for encoding p, only the coincidence event between the
signal detector and the trigger detector is meaningful. The
coincidence event can occur only when the signal photon
has passed through the polarizer P in the measurement stage
in Fig. 1(b). Thus, when the triggered single-photon source
is used, the detector and the single-photon source in the
measurement and the state preparation stages, respectively,
shown in Fig. 1(b) become redundant and can be removed
altogether as we have done in our work.

Finally, for a given state pj,, the SPA to the transpose

exp)[,om] is constructed by the probabilistic sum of four
equally weighted T operatlons [In other words, this means
that the four paths in Fig. 1(a) are noninterfering.] The resulting
state is identified by the quantum state tomography (QST) and
is then quantified by comparing to the ideal case, T™™)[p;,].
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®) T[p,]

FIG. 2. (Cglor online) (a) QST of the qubit state p;, in Eq. (4). (b) The state after transpose, T [p;,]. (c) QST of the qubit state after the
experimental T operation. (d) The state after the ideal approximate transpose. Note that the fidelity between (b) and (d) is F = 2/3, as is

exp

shown in Eq. (3). Uhlmann’s fidelity between (c) and (d) is F =~ 0.996.

The experimentally implemented transpose operation is also
analyzed by the quantum process tomography (QPT) that
identifies the performed operation. In the experiment, the
measurement duration in each setting was 1sec and the
measurement was repeated three times. QST and QPT results
were obtained using the maximum likelihood estimation.

To apply the approximate transpose operation, we consider
an arbitrary polarization state, |[{) = [|H) + (1 +i)|V)] /\/§,
and the experimentally prepared one is identified by the QST
[see Fig. 2(a)]:

0.352 — 0.307i

0.678 )mwfmm. (4)

(0322
Pin =\ 0.352 4 0.307i
The transposed state can easily be computed as T[pin] = pifl,
which is shown in Fig. 2(b). The experimental result for the
measurement-based SPA scheme depicted in Fig. 1 is then
shown in Fig. 2(c). Assuming the ideal application of the
approximate transpose, the resulting state would be T™)[p;,]
from Eq. (2) and is shown in Fig. 2(d). Using Uhlmann’s
fidelity, the experimental result can be quantified in terms of its
similarity with the ideal one, F(T™ )[Pin],Te% [ pin]) & 0.996.
‘We have also repeated the approximate transpose to a few more
states, and obtained similar values of the fidelity.

The actual operation that has been performed in experiment
can be found by the QPT. In this way, the similarity between
designed and performed quantum operations can be estimated.
For the QPT, note that the Pauli matrices [oo(z]l),ax,oy,oz]
span the operator space of single-qubit operations. Hence, a
quantum process & of a single qubit can generally be expressed
as E(ppw) = Zm,n )(mno,,,,omo,;r , Where it is the matrix x,,
that gives the complete characterization of the operation £.
For the ideal operation T™, the corresponding x matrix is

found to be X(f) = diag[1/3,1/3,0, 1/3L After the QPT, the
x matrix of the performed operation Te(xl‘g) has been con-
structed, and is shown in Fig. 3. The average fidelity between
the designed and the performed operations is exploited to
compare two channels, Fave(T(M),Te(x"g)) ~ 0.999 [15].

So far, we have shown an experimental implementation
of the universal transpose using the measurement-based SPA
scheme that can give the maximal fidelity. The scheme can
then be used as a building block for further applications of
approximate positive maps such as entanglement detection
[3,10]. We emphasize that the presented scheme is practical
within present-day technology as only linear optics are used.
There has been an earlier result reported in Ref. [16], where
the universal transpose is implemented by a random unitary
channel. As was pointed out in the original proposal in Ref. [3],
the scheme based on a unitary channel requires quantum
memory at the final step for the spectrum estimation. This
contrasts to the measurement-based SPA scheme where no
quantum memory is required [6].

Im[z)]

FIG. 3. (Color online) The x matrix for the operation TN g

exp

obtained from the QPT. The average fidelity between the performed
and the ideal operations is Fyy (T, T™) 2 0.999.

exp
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FIG. 4. (Color online) (a) The scheme 7’ is based on random
applications of three unitaries, /, o,, and o, on a single qubit. The
unitaries oy can be realized with half-wave plates. (b) The resulting
state after applying 7V to the input state p;, in Eq. (4) is identified by
the QST. The fidelity with the ideal one is F(T(U)[Pm],i%)[pin]) ~
0.999.

If we focus only on the implementation of the universal
transpose, the unitary-based scheme has an advantage over
the measurement-based SPA scheme in that lesser numbers of
optical elements are needed which helps improve the fidelity.
To fairly compare the two schemes, we have also implemented
the unitary-based scheme for the transpose: the unitary channel
can be found from the Jamiolkowski state in Eq. (1), p5 = [1 ®
T11¢M) (@) = 3 Xico. L @ 0)I$™) (67| ® 0;). Hence,
using the relation in Ref. [12] one can derive that TW[p;,] =
% Zi:O.x, . 0iPin0;, Where the superscript (U) means that the
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scheme is unitary based [16]. In Fig. 4, the experiment results
are shown for the state in Eq. (4). The average fidelity between
the experimentally obtained QPT x matrix of the operation
Te(xl{)) and the ideal operation is Fyy(TV ),Té)g)) 2 0.999.

Let us also comment on the relation of our work with other
implementations of approximate antiunitary operations. The
universal-NOT (UNOT) operation that flips unknown quantum
states is antiunitary and expressed as the product of the
Pauli matrix o, and the transpose [13]. In Ref. [17], the
optimal approximate UNOT operation has been realized in
experiment by making use of the anticloning process that
appears in the ancillary system of the 1 — 2 symmetric
universal quantum cloning [18]. Since the involved quan-
tum cloning process is an entangling operation that neces-
sarily requires the controlled-NOT (CNOT) operation in the
scheme, nonlinearity that generally gives rise to a lower
efficiency was needed to enact interactions between the
photons.

In conclusion, we have shown that an optimal approximate
transpose operation can be realized with the measurement
and preparation of quantum states. Our work shows that
SPAs to positive maps can be implemented with present-day
technologies (i.e., without requiring quantum memory and
collective measurement). We believe that our work sheds
new light on the practical implementation of SPAs to positive
maps, which is closely related to the experimental detection of
entanglement.
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