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Scheme for directly observing the noncommutativity of the position and
the momentum operators with interference
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Although noncommutativity of a certain set of quantum operators (e.g., creation and annihilation operators
and Pauli spin operators) has been shown experimentally in recent years, the commutation relation for the
position and the momentum operators has not been directly demonstrated to date. In this paper we propose and
analyze an experimental scheme for directly observing the noncommutativity of the position and the momentum
operators using single-photon quantum interference. While the scheme is studied for the single-photon state as
the input quantum state, the analysis applies equally to matter-wave interference, allowing a direct test of the
position-momentum commutation relation with a massive particle.
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I. INTRODUCTION

In quantum physics, a certain set of observables does
not commute and this noncommutativity of the conjugate
observables leads to the uncertainty relation, which is at the
heart of many unique quantum effects [1,2]. It also has been
the subject of many illuminating debates on quantum physics
[3,4]. For instance, the famous Einstein-Bohr debate was on
the uncertainty principle regarding the position and momentum
measurement as, in quantum physics, two noncommuting
observables cannot be measured accurately simultaneously
[4]. Moreover, Einstein-Podolsky-Rosen argued against such
an apparent lack of simultaneous physical reality in their
famous 1935 paper [5].

Although the commutation relation has been well estab-
lished theoretically since Heisenberg introduced the canonical
commutation relation of the position and the momentum oper-
ators, experimental tests on the noncommutativity of conjugate
operators have been rather scarce. The noncommutativity of
Pauli spin operators σx , σy , and σz has been demonstrated with
fermions (neutrons) [6,7] and recently with bosons (photons)
[8,9]. Also, the noncommutativity of bosonic creation â† and
annihilation operators â has recently been demonstrated with
photons [10,11]. However, the noncommutativity between
the position x̂ and the momentum p̂ operators has always
been associated with the uncertainty principle regarding the
position and the momentum measurements of a particle, as
pictured in the Heisenberg microscope [12,13]. Note though
that the single-particle uncertainty relation breaks down for
the position-momentum entangled two-particle system as
discussed in Ref. [5] and demonstrated in Refs. [14,15]. The
position-momentum uncertainty relation can be investigated
with the single-slit diffraction experiment involving a quantum
object [12,13] and it has been demonstrated experimentally
for neutrons [16] and for large fullerene molecules [17]. It is
nevertheless interesting to point out that the noncommutativity
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relation for the position and the momentum operators itself has
not been directly observed to date as was demonstrated for the
Pauli spin operators and the bosonic creation and annihilation
operators.

In the present work we propose and analyze an experimental
scheme to directly observe the noncommutativity of the posi-
tion and the momentum operators using the transverse spatial
degree of freedom x of a single-photon wave function ψ(x)
[in the sense that |ψ(x)|2 gives the probability distribution]
[18]. The position and the momentum operators x̂ and p̂

are implemented using position-dependent attenuators, phase
plates, and lenses. The commutator and the anticommutator of
the position and the momentum operators are constructed with
single-photon quantum interference. For an initial Gaussian
wave function ψ(x), we find that applying the commutator
leaves the state unchanged, whereas applying the anticom-
mutator results in a Wigner function with negativity, starkly
different from the Wigner function of the initial wave function
[19]. Finally, we discuss how the proposed scheme can be
applied to matter-wave interferometry to directly observe the
noncommutativity of the position and the momentum operators
for a particle with mass or a macroscopic quantum state of
matter.

II. IMPLEMENTING x̂- p̂ COMMUTATION OPERATIONS

Consider a quasimonochromatic single photon traveling
in the z direction. Since the Hilbert space that represents
the transverse spatial degrees of freedom of the photon is
isomorphic to the Hilbert space that describes the quantum
state of a point particle in two dimensions [20–22], we may
use the quantum-wave-function formalism for a point particle
to describe the transverse spatial wave function of a single
photon. We choose to describe only one transverse spatial
degree of freedom, namely, the transverse position of the
photon x, without loss of generality due to the orthogonality.

In the position basis, the relation x̂|x〉 = x|x〉 holds, so an
arbitrary pure state |α〉 can be written as |α〉 = ∫

dx ψα(x)|x〉,
where ψα(x) is the transverse spatial wave function for the
state |α〉. In the conjugate momentum basis, the relation
p̂|p〉 = p|p〉 holds, so |α〉 = ∫

dp φα(p)|p〉, where φα(p) is
the corresponding wave function for |α〉 in this basis.
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FIG. 1. (Color online) Scheme for implementing the x̂ operation.
Applying x̂ to the wave function introduces the amplitude transmis-
sion coefficient t(x) = x/l. The phase shifter introduces the relative
phase shift of π for the region x ∈ [−l,0]. The position-dependent
transmitter introduces the linear amplitude transmission coefficient
t(x) = |x|/l.

To implement a quantum operator is to find a quantum
operation that results in the desired output quantum state. For
the position operator x̂,

x̂|α〉 = x̂

(∫
dx ψα(x)|x〉

)
=

∫
dx xψα(x)|x〉, (1)

which means that the action of x̂ to the wave function
ψα(x) is multiplication of x to the wave function, i.e.,
xψα(x). Then the corresponding operation is to introduce
the amplitude transmission coefficient t = x/l, which can
be implemented by using a set that consists of a π phase
shifter followed by an attenuator with the linear amplitude
transmission coefficient t(x) = |x|/l (see Fig. 1). The phase
shifter introduces the relative phase shift of π for the region
x ∈ [−l,0] with respect to the region x ∈ [0,l]. The phase
shifter can be implemented, for instance, with a piece of glass
by polishing away thickness corresponding to λ/2 for the
region x ∈ [−l,0], where λ is the central wavelength of the
photon. The phase shifter and the attenuator together achieve
the overall amplitude transmission coefficient of t(x) = x/l,
implementing the operation corresponding to a dimensionless
position operator x̃ = x̂/ l.

For the momentum operator p̂ we have a similar result

p̂|α〉 = p̂

(∫
dp φα(p)|p〉

)
=

∫
dp pφα(p)|p〉. (2)

To implement the quantum operation that results in pφα(p),
we simply need to place the set consisting of the phase shifter
and the attenuator in Fig. 1 at the Fourier plane of the incoming
photon. This is easy to see by simply reexpressing Eq. (2) in
the position basis p̂|α〉 = ∫

dp pφα(p)|p〉 = ∫
dx〈x|p̂|α〉|x〉.

The scheme for implementing the p̂ operation is shown in

FIG. 2. (Color online) Scheme for implementing the p̂ operation.
Two lenses of the same focus f make a 4f imaging system with the
x̂ operation implemented at the Fourier plane.

FIG. 3. (Color online) Coherent superposition of two quantum
operations x̃p̃ and p̃x̃ is accomplished with a Mach-Zehnder
interferometer. Single-mode fiber tips (connected to single-photon
detectors) are scanned in transverse directions to measured the output
states.

Fig. 2. Two lenses of the same focus f form a 4f imaging
system and the x̂ operation is implemented at the Fourier plane
of the 4f imaging system.

To be more specific, consider the scheme in Fig. 2 and
assume that the wave function in the input plane (z = 0)
is given as ψα(x). The first lens maps the position-space
wave function ψα(x) onto the momentum-space wave function
φ′

α(p′) [23],

φ′
α(p′) = 1√

iλf

∫
ψα(x) exp

(
−i

2π

λf
xp′

)
dx, (3)

where p′ = λf

2πh̄
p. At the Fourier plane, the set of the

phase shifter and the attenuator performs the transformation
φ′

α(p′) → p′φ′
α(p′)/l. Finally, at the output of the optical

system, i.e., z = 4f , the wave function is now given as

1√
iλf

∫
p′

l
φ′

α(p′) exp

(
i
2π

λf
x ′p′

)
dp′ = −i〈x ′|p̃|α〉, (4)

where p̃ = λf

2πh̄l
p̂ is the dimensionless momentum operator.

Note that we chose x ′ = −x to account for the inverting nature
of a 4f imaging system.

We have so far discussed how to implement the dimen-
sionless position x̃ and momentum p̃ operators. Let us now
discuss how to probe the commutation relations for the
operators by using single-photon interference. Consider the
experimental scheme shown in Fig. 3. A single-photon state
enters the Mach-Zehnder interferometer via the beam splitter
at the left. At each arm of the interferometer, optical systems
that implement the dimensionless position and momentum
operators are placed, but in different order. In the top path
p̃x̃ is implemented and in the bottom path x̃p̃ is implemented.
The two quantum operations are then coherently superposed
at the second beam splitter with a relative phase ϕ [10,11].
The quantum superposition of operators is implemented
at the output of the Mach-Zehnder interferometer, namely,
x̃p̃ + eiϕp̃x̃ at D1 and x̃p̃ − eiϕp̃x̃ at D2. The resulting wave
functions can be analyzed by measuring the single-photon
detection probabilities with scanning fiber tips in the transverse
direction.
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III. RESULTS AND DISCUSSION

Suppose now that a single-photon with the wave function
ψ(x) enters the interferometer and the relative phase is set
at ϕ = π . At D1 we have [x̃,p̃]ψ(x) = C

h̄
[x̂,p̂]ψ(x), where

C ≡ λf

2πl2 . Since [x̂,p̂] = ih̄, the commutator for the dimen-
sionless operators becomes [x̃,p̃] = iC, so the commutator
operated on the wave function leaves the state unchanged (after
normalization). Similarly, at D2 the anticommutator for the
dimensionless operators acting on the wave function results
in {x̃,p̃}ψ(x) = C

h̄
{x̂,p̂}ψ(x), which means that the resulting

wave function appearing at D2 is different from the input wave
function. Note that the commutator and the anticommutator
output ports, set at D1 and D2, respectively, can be switched
by choosing the relative phase value ϕ = 0.

As an example let us consider a quasimonochromatic
single-photon state with a Gaussian wave function

ψ(x) = 4

√
2

πw2
exp(−x2/w2) (5)

at the input port of the Mach-Zehnder interferometer. The
detection probability I 1

ϕ (x) at D1 as a function of x and
ϕ is shown in Fig. 4. Here we assume λ = 800 nm, w =
0.5 mm, l = 1.5 mm, and f = 50 cm. The figure shows
that at ϕ = π , which corresponds to the commutator case,
the Gaussian input wave function is reproduced at the output
as expected. In contrast, at ϕ = 0, which corresponds to the
anticommutator case, the output shows interference fringes
along the x direction.

A complete characterization of the spatial coherence of
the wave function ψ(x), however, requires tomographic
reconstruction of the spatial Wigner function W (x,p), where
x and p refer to the actual position and momentum of the
single photon. The spatial Wigner function W (x,p) can be
reconstructed by employing, for example, an area-integrated
detection scheme [19]. In Fig. 5 the spatial Wigner functions
for the input wave function and the two output wave func-
tions (i.e., the commutator-operated wave function and the

1
0

1 0

FIG. 4. (Color online) Probability distribution I 1
ϕ (x) at D1 cal-

culated as a function of ϕ and x assuming a Gaussian input wave
function. The commutator ϕ = π acting on the input Gaussian wave
function leaves the wave function unchanged. The anticommutator
ϕ = 0, however, causes the input wave function to change, resulting
in interference.

FIG. 5. (Color online) Spatial Wigner functions W (x,p) of the
input wave function ψ(x) (Gaussian, everywhere positive) and
the states after the commutator [x̃,p̃] and anticommutator {x̃,p̃}.
Applying the commutator to the wave function results in the
identical spatial Wigner function as the input, whereas applying
the anticommutator lead to a starkly different Wigner function with
negativity.

anti-commutator-operated wave functions) are shown. The fig-
ure clearly shows that the input and the commutator-operated
wave functions have the same Wigner functions. In other
words, it shows that the quantum operation corresponding to
the x̂ and p̂ commutator is indeed equivalent to (a constant
multiple of) the identity operation. In contrast, the anti-
commutator-operated wave function exhibits a completely
different Wigner function, interestingly with a clear signature
of negativity.

IV. CONCLUSION AND OUTLOOK

The commutation relation for the position and the momen-
tum operators leads to the position-momentum uncertainty
relation and, in experiment, the position-momentum uncer-
tainty relation has been demonstrated in single-slit diffraction
experiments involving a massive (neutrons, fullerene, etc.) or
a massless particle (photons) [13,16,17]. In this work we have
proposed and analyzed an interferometric scheme for directly
(i.e., without involving the uncertainty relation) observing the
commutation relation for the position and the momentum oper-
ators using single-photon quantum interference. The proposed
scheme requires only linear optical elements and single-photon
detectors so it should be possible to realize such an experiment
if the position-dependent attenuator and the π phase shifter
can be precisely engineered. In practice, a soft-edge graduated
neutral density filter (whose amplitude transmission coefficient
is linear) can function as a position-dependent attenuator and
a molding technique can be used for producing a precise phase
shifter [24].

Although the interferometric scheme proposed in this paper
is focused on single-photon interferometry, the proposed
concept can readily be expanded to matter-wave interferometry
involving a massive particle or even the macroscopic quantum
state of matter. For instance, essential elements in the proposed
scheme can be built for a Bose-Einstein condensate, a
macroscopic quantum object. Position-dependent attenuators
can be built using the quantum tunneling effect through a laser-
induced potential barrier [25], focusing of a matter wave can
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be accomplished by using light as an atomic lens [26,27], and a
matter-wave interferometer can be built by using the sequential
Bragg momentum transfer effect [28]. Moreover, it is possible
to reconstruct the spatial Wigner function for a massive
particle [29], thus making a direct experimental test of the
position-momentum commutation relation with a macroscopic
quantum object within the reach of present-day technology.
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