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Experimental realization of an approximate transpose operation for qutrit systems
using a structural physical approximation
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Although important for detecting entanglement, the transpose operation cannot be directly realized in laboratory
because it is a nonphysical operation. It is, however, possible to find an approximate transpose operation using
the method known as the structural physical approximation (SPA); recently, SPA-based implementations of the
transpose and partial transpose have been demonstrated for a single-qubit [Phys. Rev. A 83, 020301(R) (2011)]
and an entangled two-qubit system [Phys. Rev. Lett. 107, 160401 (2011)]. In this work, we expand SPA-transpose
to a three-dimensional quantum system: a qutrit. The photonic qutrit state is encoded in the polarization, and path
degrees of freedom of a single-photon and the SPA-transpose operation, which is based on measurement and
preparation of quantum states, is implemented with linear optics. Our work paves the way toward entanglement
detection for higher-dimensional quantum systems.
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The transpose operation is of great importance in quantum
information theory as it can be used for detecting useful
entanglement: According to the Peres-Horodecki criteria,
separable states give only positive eigenvalues after the partial
transposition [1–3]. However, since the transpose is not a
completely positive operation [2], it cannot be a physical quan-
tum operation. In other words, it is fundamentally impossible
to implement the transpose operation in the laboratory for
detecting entanglement.

Instead, structural physical approximation (SPA), a sys-
tematic approximation to positive maps, has been proposed
for the direct experimental entanglement detection in Ref. [4].
In SPA, an original nonphysical operation (such as transpose)
is admixed with a precise amount of white noise to construct
an approximate operation which is completely positive, such
that the newly constructed approximate operation is a physical
quantum operation. Since the added white noise is isotropic,
the approximate operation can retain important properties
of the original nonphysical operation. SPA proposed in
Ref. [4] is still technically difficult to implement as collective
measurement, requiring coherent quantum operations over
multiple identically prepared quantum systems and quantum
memory, is assumed for spectrum estimation. Recently, it has
been conjectured that SPA to a positive map is entanglement
breaking [5], meaning that for those maps that fulfill the
conjecture, their SPA’s can be realized with measurement and
preparation of quantum states [6]. Thus, realization of the
SPA operation becomes much simpler and feasible as it can
be implemented with quantum operations (SPA of transpose,
SPA of inversion, identity, and depolarization) over individual
quantum systems.

To date, SPA operations have been implemented for the
single-qubit and two-qubit systems only. In Ref. [7], SPA of the
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transpose operation (SPA-T) for a photonic qubit is reported.
Here, the optimal approximate transpose operation for a qubit
is implemented by SPA based on measurement and preparation
of the photonic qubit using linear optics. Also, recently, SPA
of the partial transpose operation (SPA-PT) for a two-qubit
system has been experimentally demonstrated [8]. In Ref. [8],
SPA-PT was realized linear optically assuming local operation
and classical communication (LOCC) by using the fact that
SPA-PT can be decomposed into a convex combination of
local operations on individual subsystems [9].

Recently, communication of quantum information encoded
in d-dimensional quantum systems, qudits, has attracted much
attention [10–16]. Since Peres-Horodecki criteria can be
applied to entangled qudits, SPA-PT could enable straight-
forward entanglement detection in high-dimensional quantum
systems. In this work, as a step toward this direction, we
report a linear optical experimental realization of SPA-T
based on measurement and preparation of quantum states
for a photonic three-dimensional quantum system (qutrit).
The experimentally implemented SPA-T exhibits excellent
agreement with the ideal SPA-T, as evidenced in the high
process fidelity between the ideal quantum operation and the
experimentally reconstructed quantum operation.

Let us begin by briefly introducing the theoretical back-
ground of SPA based on the measurement and preparation of
quantum states [5]. The key idea of SPA is that one admixes
a precise amount of white noise to a nonphysical operation �

so that the approximate operation �̃ is positive and completely
positive, i.e., �̃ can now be realized as it is a physical quantum
operation. The approximate operation �̃ can thus be written
as

�̃ = (1 − p)� + pD, (1)

where 0 � p � 1 and the contraction map D[ρ] = Id/d (Id is
a d-dimensional identity matrix) transforms the quantum state
ρ into the maximally mixed state (white noise) and d is the
dimension of ρ.

For the transpose operation T , the value of p is calculated
by maximizing the fidelity between T and T̃ operated on a

042334-11050-2947/2012/86(4)/042334(7) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.020301
http://dx.doi.org/10.1103/PhysRevLett.107.160401
http://dx.doi.org/10.1103/PhysRevA.86.042334


LIM, KIM, RA, BAE, AND KIM PHYSICAL REVIEW A 86, 042334 (2012)

pure state |ψ〉,
F = tr[T [|ψ〉〈ψ |]T̃ [|ψ〉〈ψ |]] = 2/(d + 1), (2)

and is given by p = d/(d + 1). In the case of a qutrit, T̃ is
therefore given by [5]

T̃ = 1
4T + 3

4D. (3)

While useful in showing how much white noise needs to
be added to turn T (which is nonphysical) into a physically
realizable T̃ , the above equation itself is not useful in

designing an experimental setup. Based on the conjecture that
SPA to a positive map is entanglement breaking and thus
can be implemented with measurement and preparation of
quantum states [5], Eq. (3) can be rewritten into the following
decomposition as discussed in Refs. [7,8,17]:

T̃ [ρ] =
9∑

k=1

tr

[
1

3
|v∗

k 〉〈v∗
k |ρ

]
|vk〉〈vk|, (4)

where the vectors |vk〉 are defined as
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and this form of SPA-T can be directly implemented in
the laboratory. Here, ω = exp(i2π/3) is the relative phase
between two occupied bases. Note that these are known as
symmetric and informationally complete positive-operator-
valued measures (SIC-POVM) [18].

The quantum operation described in Eq. (4) can be
schematically shown in Fig. 1. For a given qutrit state ρ,
measurement is performed with the measurement operator
Mk = |v∗

k 〉〈v∗
k |/3, where |v∗

k 〉 are complex conjugates of |vk〉.
Note that {Mk = |v∗

k 〉〈v∗
k |/3}9

k=1 forms a complete measure-
ment set. Whenever the measurement is successful (the success
probability is pk = tr[Mkρ]), the corresponding quantum state
|vk〉〈vk| is prepared and sent out. In Fig. 1, each set of
measurement-preparation operations is denoted as T̃k; there
are nine such measurement-preparation operations which must
occur randomly with equal probabilities. Thus, for a qutrit
state ρ, applying SPA-T is equivalent to making a projection
measurement in the basis |v∗

k 〉 (must be randomly chosen
among nine basis states), and when successful, preparing a
corresponding quantum state |vk〉 to transmit. SPA-T of a qutrit
state ρ, T̃ [ρ], can then be described as an incoherent mixture

Measurement Preparation

Success

Fail

FIG. 1. (Color online) Scheme for implementing SPA-T for qutrit
systems based on measurement and preparation of quantum states in
Eq. (4). For an input qutrit state ρ, each operation T̃k for k = 1, . . . ,9
is randomly applied with equal probability of 1/9. Then the output
state becomes an equal mixture of the nine possibilities. Note that the
probability for each |vk〉〈vk|, pk , is determined by the probability of
successful outcome for the measurement Mk , i.e., pk = tr[Mkρ].

of nine states |vk〉〈vk| of which the probability of each state
is determined by the corresponding measurement outcomes
tr[Mkρ] for k = 1, . . . ,9.

Let us now describe the linear optical implementation of the
SPA-T described in Eq. (4). Photonic qutrit states are prepared
using path (a and b) and polarization (horizontal H and vertical
V ) degrees of freedom of a single photon as shown in Fig. 2(a)
[19,20]: |0〉 = |a,H 〉, |1〉 = |a,V 〉, and |2〉 = |b,H 〉 and the
corresponding general qutrit states are described in Fig. 2(b).
The single-photon source used in the experiment was prepared
by using the spontaneous parametric down-conversion (SPDC)
process in which a pair of 810-nm photons are generated in
a 6-mm-thick type I β-BaB2O4 (BBO) crystal pumped with
a 405-nm diode laser operating at 100 mW. The photon pairs
propagate non-collinearly and detection of an idler photon at
a trigger detector heralds preparation of a single-photon state
for the signal photon [21]. An arbitrary single-photon qutrit
state |ψ〉 = α|0〉 + β|1〉 + γ |2〉 where |α|2 + |β|2 + |γ |2 = 1
can then be prepared by using a set of wave plates (WP’s)
and a calcite beam displacer (BD); see Fig. 2(b). Note that
the |b,V 〉 state is never excited. The coincidence counting
rate between the trigger detector and the detector counting
the signal photon is approximately 18 kHz using interference
filters with full width at half-maximum bandwidth of 10 nm
and 5 nm for the signal and the idler photons, respectively.

The experimental setup for realizing SPA-T is shown in
Fig. 2(c), where the whole setup consists of four parts: (i)
state preparation, (ii) SPA measurement, (iii) SPA preparation,
and (iv) quantum state tomography (QST). At the state
preparation part, the initial single photon is transformed into
an arbitrary qutrit state, |ψ〉 = α|0〉 + β|1〉 + γ |2〉. When
the single-photon passes through BD1, which is 4.1-cm
thick, the horizontally polarized component is refracted while
the vertically polarized component is transmitted without
refraction. The spatial separation between the two beams is
4.0 mm. By making use of the half-wave plate (HWP) in front
of BD1, one can adjust the splitting ratio for upper path a1 and
lower path b1, hence the amplitudes for |0〉 and |2〉. The HWP’s
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FIG. 2. (Color online) (a) Qutrit basis states are encoded on polarization (horizontal H and vertical V ) and path (a and b) degrees of
freedom of a single photon. Note that the |b,V 〉 state is never excited. (b) Arbitrary single-photon qutrit states can be prepared by linear optics
alone. BD splits horizontal and vertical polarization components spatially by 4 mm. (c) Experimental setup. The whole setup is composed of
four parts: State preparation, SPA Measurement, SPA Preparation, and Quantum state tomography (QST). The SPA Measurement and SPA
Preparation parts perform the approximate transpose operation T̃ for the input state ρ. The λ/3-WP introduces the relative phase shift of 2π/3
to the polarization component orthogonal to its fast axis. Angle settings for the labeled wave plates are shown in Table I.

and quarter-wave plates (QWP’s) behind the BD1 are used for
adjusting the ratio for horizontal and vertical polarizations,
hence the amplitudes for |0〉 and |1〉, and for changing the
relative phases among the three basis states.

At the SPA measurement part, an initial state ρin is projected
to one of nine bases |v∗

k 〉 with equal probability. Since the qutrit
state is encoded in path and polarization degrees of freedom
of a single photon, projection measurement on both degrees of
freedom is needed and the measurement scheme is shown at
the SPA measurement part in Fig. 2(c). In general, projection
measurement for the path degree of freedom requires spatial
interferometry (see Refs. [19,20]), while wave plates and a
polarizer are needed for polarization measurement.

To describe the measurement scheme more in detail, first
consider SPA measurement Mk for k = 1,2,3. In these cases,
the measurement bases have equal ratios of |0〉 = |a1,H 〉
and |1〉 = |a1,V 〉 with different relative phases. Since the
measurement bases have only |a1〉 path component, projection
measurement on the path degree of freedom is accomplished
by directing the |b1〉 component to one of the nondetecting

output modes of BD2, e1, using WP’s (C and D) and BD2. For
the polarization degree of freedom, projection measurement
is accomplished by WP’s (A and B) and BD2. Note that
for the photon in the input path |a1〉, BD2 functions as a
polarizer, transmitting the vertically polarized component to
the detecting output mode d1 while the horizontally polarized
component is directed to the nondetecting output mode c1. A
single photon (vertically polarized) found in mode d1 signals
successful SPA measurement. The remaining WP’s (E and F)
and the polarizer in mode d1 are for other SPA measurements
(k values other than 1,2,3) so the angles of the WP’s (E
and F) are set such that they do not alter the polarization
state of the photon. See Table I for the angle settings of
the WP’s.

On the other hand, for k = 4,5,6, the measurement bases
have an equal ratio of |1〉 = |a1,V 〉 and |2〉 = |b1,H 〉 with
different relative phases. Unlike the cases of k = 1,2,3, the
measurement bases have one component in each path |a1〉
and |b1〉. To perform the projection measurement onto these
measurement bases, WP’s (A and B) are first set so that |0〉

TABLE I. Angle settings of WP’s, see Fig. 2(c), for each SPA measurement-preparation operation T̃k . The numbers represent
counterclockwise rotation angles (in degrees) of the fast axes of WP’s from the vertical polarization direction.

A B C D E F G H I J K

T̃1 90◦ 22.5◦ 0◦ 45◦ 0◦ 0◦ 45◦ 67.5◦ 90◦ 45◦ 0◦

T̃2 0◦ 22.5◦ 0◦ 45◦ 0◦ 0◦ 45◦ 67.5◦ 0◦ 45◦ 0◦

T̃3 135 22.5◦ 0◦ 45◦ 0◦ 0◦ 45◦ 67.5◦ 45◦ 45◦ 0◦

T̃4 90◦ 0◦ 0◦ 0◦ 0◦ 22.5◦ 22.5◦ 45◦ 0◦ 45◦ 0◦

T̃5 90◦ 0◦ 0◦ 0◦ 90 22.5◦ 22.5◦ 45◦ 90◦ 45◦ 90◦

T̃6 90◦ 0◦ 0◦ 0◦ 45◦ 22.5◦ 22.5◦ 45◦ 0◦ 45◦ 90◦

T̃7 0◦ 45◦ 0◦ 0◦ 90 22.5◦ 22.5◦ 90◦ 0◦ 45◦ 90◦

T̃8 0◦ 45◦ 0◦ 0◦ 0◦ 22.5◦ 22.5◦ 90◦ 90◦ 45◦ 0◦

T̃9 0◦ 45◦ 0◦ 0◦ 45◦ 22.5◦ 22.5◦ 90◦ 0◦ 45◦ 0◦
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FIG. 3. (Color online) (a) QST of the input qutrit state ρ(1)
in . (b)

Mathematically transposed state, T [ρ(1)
in ]. (c) QST of the state after

the experimentally implemented approximated transpose, T̃exp[ρ(1)
in ].

(d) The state after ideal approximated transpose, T̃ [ρ(1)
in ]. Uhlmann’s

fidelity between (c) and (d) is F ≈ 0.999.

component is directed to one of the nondetecting output modes,
|c1〉, as there is no projection onto the |0〉 = |a1,H 〉 basis. At
the same time, both |1〉 and |2〉 components are superposed at
BD2 such that the following transformation occurs:

|1〉 = |a1,V 〉 → |d1,V 〉 and |2〉 = |b1,H 〉 → |d1,H 〉
by using WP’s (A ∼ D). The polarization projection measure-
ment is then performed on the photon in mode d1 in the basis

FIG. 4. (Color online) (a) QST of the input qutrit state ρ(2)
in . (b)

Mathematically transposed state, T [ρ(2)
in ]. (c) QST of the state after

the experimentally implemented approximated transpose, T̃exp[ρ(2)
in ].

(d) The state after ideal approximated transpose, T̃ [ρ(2)
in ]. Uhlmann’s

fidelity between (c) and (d) is F ≈ 0.999.

(ωk|H 〉 + |V 〉)/√2 where ω = exp(i2π/3) by using WP’s (E
and F) and the polarizer. For k = 7,8,9, the measurement
scheme is similar to that of k = 4,5,6 with the only difference
being that |1〉 = |a1,V 〉 is discarded instead of |0〉 = |a1,H 〉.
Actual angles settings for the WP’s are shown in Table I.

For the initial qutrit state ρin, the SPA measurement
operation Mk has the success probability of 〈v∗

k |ρin|v∗
k 〉 and

the polarization state of the photon after the SPA measurement
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operation is |V 〉 due to the projection at the polarizer. The SPA
preparation operation then prepares the corresponding qutrit
state |vk〉 from |V 〉 using WP’s (G ∼ K) and BD3. Angle
settings of WP’s for the SPA preparation scheme are displayed
in Table I.

In experiment, commercial zero-order HWP’s and QWP’s
as well as custom-made λ/3-WP’s, which introduce a relative
phase difference of 2π/3 between two orthogonal polarization
components, were used for polarization state transformation.
All WP’s were mounted on motorized rotation stages for
accurate and precise setting of the angles. As mentioned earlier,
projection measurement for the path degree of freedom of
a single-photon requires the formation of an interferometer
[19,20]. For instance, BD1 and BD2 (also BD3 and BD4) form
a Mach-Zehnder–type two-beam interferometer which needs
to be stabilized. In our work, due to the compact design of the
setup, the relative phase differences between the upper-lower
paths (i.e., a1 − −b1 and a2 − −b2) were easily maintained
over a day without any active feedback. Fine adjustment of
the relative phase difference was achieved by horizontally
tilting BD2 (BD4): We set the relative phase difference to
0 modulo 2π .

The output of the SPA measurement-preparation operation,
which is a probabilistic sum of nine equally weighted T̃k

operations, then corresponds to the SPA-T operation T̃exp[ρin].
To confirm that the SPA-T operation has indeed been accom-
plished, we carry out QST to reconstruct the experimental
output state T̃exp[ρin] and compare it with the ideal SPA-
T operation T̃ [ρin] [22,23]. In general, for d-dimensional
quantum states, i.e, qudits, at least d2 different measurements
are required to fully reconstruct the state. To perform QST
on a qutrit state, we used {|vk〉〈vk|}9

k=1 as a set of nine QST
measurement bases [18,24]. The angles setting of the WP’s for
the QST measurement basis |vk〉〈vk| can be found in Table I.
Note that |v1〉 = |v∗

2〉, |v2〉 = |v∗
1〉, |v3〉 = |v∗

3〉, etc. In addition,
in order to confirm that the experimentally implemented SPA-T
operation is performed well, we have also carried out quantum
process tomography (QPT) [25]. QST and QPT results were
obtained using the maximum likelihood estimation method
[22,25].

In order to graphically show how SPA-T transforms a
qutrit state, we show the results for two input states ρ(1)

in
and ρ(2)

in among the variety of input states that we tested. The
experimentally prepared input state ρ(1)

in is identified by QST
and the density matrix of this input state is shown in Fig. 3(a).
The qutrit state ρ(1)

in was chosen for a clear demonstration of
the state transformation (in the computational basis) due to the
SPA-T operation as all off-diagonal elements are nonzero. The
transposed state of the input state can be obtained as T [ρ(1)

in ]
which is represented in Fig. 3(b). Notice that the real part of
the density matrix (Re[ρ]) remains without any change but the
off-diagonal terms in the imaginary part of the density matrix
(Im[ρ]) are interchanged. This is due to the Hermitian property
of the density matrix. Then, the resultant state T̃exp[ρ(1)

in ]
after the experimentally realized SPA-T operation is shown
in Fig. 3(c). Compared to the input state ρ(1)

in , the amplitudes
of the off-diagonal terms in T̃exp[ρ(1)

in ] are decreased and the
magnitude differences among diagonal terms are reduced
due to the effect of mixing with a white noise. One can
also easily notice that the off-diagonal terms in imaginary

parts are interchanged like the transposed state. Assuming
the ideal SPA-T operation, the output state would be T̃ [ρ(1)

in ]
and is represented in Fig. 3(d). To quantify the performance
of the realized operation, we evaluate Uhlmann’s fidelity
F (ρ,σ ) = [tr

√√
ρσ

√
ρ]2 between two states, one from the

experimental realization ρ = T̃exp[ρin] and the other from the
ideal one σ = T̃ [ρin] [26]. Our experimental results show
F (T̃exp[ρ(1)

in ],T̃ [ρ(1)
in ]) ≈ 0.999.

The reconstructed density matrix of another experimentally
prepared input state ρ(2)

in is graphically shown in Fig. 4(a). The
qutrit state ρ(2)

in was specifically chosen to demonstrate the
effect of admixing with white noise. Similarly to the results
for ρ(1)

in , the density matrices of T [ρ(2)
in ], T̃exp[ρ(2)

in ], and T̃ [ρ(2)
in ]

are represented in Figs. 4(b), 4(c), and 4(d), respectively. Note
that although the initial state ρ(2)

in has almost no components
in the |0〉 basis, T̃exp[ρ(2)

in ] has |0〉 basis component due to
the mixing with a white noise. The obtained fidelity value
is F (T̃exp[ρ(2)

in ],T̃ [ρ(2)
in ]) ≈ 0.999. We also repeated SPA-T to a

few more states, and the obtained values of fidelities are higher
than 0.989.

The experimentally realized SPA-T operation can be iden-
tified with QPT. In general, for a quantum operation on a

b( ) Re exp

a( ) Re ideal[ ]

0.0

0.2

0.4

0.0

0.2

0.4

FIG. 5. (Color online) (a) The QPT matrix χideal for the ideal SPA
transpose operation T̃ . (b) The QPT matrix χexp for the implemented
SPA-T operation T̃ . Note that only the real parts of the χ matrices are
shown, as the imaginary parts are almost zero. The average fidelity
between the ideal and realized operations is Fave(T̃ ,T̃exp) ≈ 0.982.
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d-dimensional quantum system, d2 different input states are
required to carry out QPT and one needs to analyze the state
before and after the realized operation using QST for each
input state. A quantum process ε of a single qudit can generally
be expressed as

ε(ρin) =
d2−1∑
m,n=0

χm,n λm ρin λ†
n, (5)

where {λm}d2−1
m=0 forms the complete set of d × d dimensional

operator basis and the process matrix χ gives the complete
characterization of the operation ε. Note that χ is a d2 × d2

matrix.
If one chooses a certain basis set {λm}d2−1

m=0 , the process
matrix χ is uniquely determined, and by performing QST, χ

can be experimentally identified. For a single-qutrit system,
nine operator bases are needed, and we used the following as
the complete operator basis set [23]:

λ0 =
⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ , λ1 =

⎛
⎝ 0 1 0

1 0 0
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⎞
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⎝ 0 −i 0
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⎞
⎠ , λ3 =

⎛
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0 −1 0
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⎞
⎠ , λ4 =

⎛
⎝ 0 0 1

0 0 0
1 0 0

⎞
⎠ ,

λ5 =
⎛
⎝ 0 0 −i

0 0 0
i 0 0

⎞
⎠ ,λ6 =

⎛
⎝ 0 0 0

0 0 1
0 1 0

⎞
⎠ , λ7 =

⎛
⎝ 0 0 0

0 0 −i

0 i 0

⎞
⎠ , λ8 = 1√

3

⎛
⎝ 1 0 0

0 1 0
0 0 −2

⎞
⎠ ,

where one can easily notice that λ0 is an identity operator.
The ideal process matrix χideal for SPA-T is given as

χideal =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
6 0 0 1

6 0 0 0 0 0

0 1
4 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1
6 0 0 1

4 0 0 0 0 1
4
√

3
0 0 0 0 1

4 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
4 0 0

0 0 0 0 0 0 0 0 0

0 0 0 1
4
√

3
0 0 0 0 1

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the above χideal is graphically shown in Fig. 5(a).
The process matrix for the performed operation is ex-
perimentally constructed by QPT, and the experimen-
tally reconstructed process matrix χexp is shown in
Fig. 5(b). The average fidelity between the ideal and
the realized operation is calculated to be Fave(T̃ ,T̃exp) =∫

dψF (T̃ [|ψ〉〈ψ |],T̃exp[|ψ〉〈ψ |]) ≈ 0.982. We believe that
the small discrepancy between the ideal and realized oper-

ations is mainly caused by slight misalignment of the relative
phase difference in the interferometers formed by BD1-BD2
and BD3-BD4 in Fig. 2. For detailed discussions on the gate
fidelity related to nonunitary operations, see Ref. [27].

In summary, we have reported a linear optical experimental
realization of the approximate transpose operation for a
photonic qutrit system. Our scheme is based on the conjecture
that SPA to a positive map is entanglement breaking, so
the SPA scheme is built upon measurement and prepara-
tion of quantum states. Our work demonstrates that SPA’s
for high-dimensional quantum systems can be realized in
experiment within the present-day technology. Furthermore,
our work on SPA-T paves the way toward entanglement
detection based on SPA-PT for high-dimensional quantum
systems.
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