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Experimental implementation of a fully controllable depolarizing quantum operation
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The depolarizing quantum operation plays an important role in studying the quantum noise effect and
implementing general quantum operations. In this work, we report a scheme which implements a fully controllable
input-state-independent depolarizing quantum operation for a photonic polarization qubit.
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One of the main challenges in experimental quantum
information is to deal with decoherence. To preserve a qubit
state, it is often necessary to isolate the qubit from the
environment but to be able to do information-processing
tasks, interactions with external systems are necessary. More
often than not, unwanted interactions with the environment
leave the system qubits in different quantum states or even
cause the qubits to lose coherence. Such unwanted quantum
state transformation can be described by the quantum process
due to a noisy quantum channel, in other words, a noisy
quantum process, which can be understood with a few basic
single-qubit noise operations including the bit-flip, the phase-
flip, depolarization, and amplitude damping [1].

Understanding and being able to implement each of the
basic quantum noise processes are important in theoretical
and experimental quantum-information science. First, this
would allow us to simulate and quantify quantum noise
processes. Second, the bit-flip and the phase-flip operations
are essential for quantum error-correction protocols. Third,
the depolarization and the amplitude damping operations can
describe decoherence.

The depolarization operation is of particular interest be-
cause, in addition to being relevant to a number of practical
quantum communication and computation scenarios [2–7], it
is also an essential operation for optimally approximating
nonphysical quantum operations [8,9] and for generating
exotic quantum states including Werner states [10] and bound
entangled states [11]. Clearly, from the experimental point
of view, it is important to develop a method to achieve a
fully controllable input-independent depolarization quantum
operation.

As such, there have been many reports on experimental
implementation of a depolarization quantum channel. In
Ref. [12], optical scattering media were used to achieve
the depolarization quantum channel but the scheme naturally
induces the spread in the photon momenta and it is difficult
to control the degree of depolarization in that scheme.
Controllable depolarization channels were demonstrated in
Refs. [13,14] but the output state was dependent on the input
state. An input-independent depolarizing quantum operation
was demonstrated in Refs. [3,4,15] by time averaging of many
“fast” operations, i.e., an incoherent sum of many different
pure quantum states. Continuously variable depolarization
was demonstrated in Ref. [16], but that scheme relied on
tracing out of the time degree of freedom, and using a
reversed set of crystals could in fact reverse the effect of the
channel.

In this Brief Report, we report an experimental implemen-
tation of a fully controllable depolarization quantum operation
for a photonic polarization qubit. The scheme is completely
input-state independent so that it is possible to introduce
any desired degree of depolarization regardless of the state
of the input qubit. Furthermore, our scheme does not rely
on time averaging or spatial averaging so that neither the
measurement duration nor the measurement affect the output
quantum state. In other words, our scheme achieves a truly
observer-independent depolarizing quantum operation.

The depolarizing quantum operation is described as

E(ρ) = pI

2
+ (1 − p)ρ, (1)

where p is the degree of decoherence (0 � p � 1), ρ is the
input state of the photonic polarization qubit, and I is the two-
dimensional identity matrix. It can be also written in the oper-
ator sum representation as E(ρ) = (1 − 3p

4 )IρI + p

4 (XρX +
YρY + ZρZ), where X, Y , and Z are Pauli operators. Note
that the depolarizing quantum operation is nonunitary so it
should not be possible to reverse it linearly.

We implement the depolarizing operation E(ρ) by using
a modified displaced Sagnac interferometer setup as shown
in Fig. 1. The displaced Sagnac interferometer [17] consists
of a polarizing beam splitter (PBS) and two half-wave plates
that can be oriented at the angle θ (@θ in Fig. 1). Another
half-wave plate fixed at 45◦ at the output mode B makes the
polarization state of the two output modes A and B identical.

It is not difficult to see that the displaced Sagnac interfer-
ometer in Fig. 1 acts as a continuously variable nonpolarizing
beam splitter in which the output ratio A : B = 1 − p : p can
be linearly varied by setting the angle θ of the two half-wave
plates. Note that the splitting parameter p = sin2(2θ ). This
is confirmed in the experiment as shown in Fig. 2. In the
experiment, we prepared the single-photon polarization qubit
ρ by using the heralded single-photon state generated from
spontaneous parametric down-conversion (SPDC) in a 3-mm
type-II β-barium borate crystal. The wavelength of the pump
and that of the SPDC photon, respectively, are 405 and 810 nm.
The input polarization qubit was prepared in a pure state ρ =
|ψ〉〈ψ | by using a half-wave plate and a quarter-wave plate.
We then measured the count rates at the two single-photon
detectors placed at the output ports A and B and the data are
shown in Fig. 2. As expected, the data show the linear splitting
ratio between the two outputs A and B with the splitting
parameter p. In Fig. 2, we plot the averaged normalized outputs
A and B for six input polarization states: |H 〉 (horizontal), |V 〉
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FIG. 1. (Color online) Experimental schematic for a fully con-
trollable input-independent depolarizing quantum operation for a
photonic polarization qubit ρ.

(vertical), |D〉 ≡ (|H 〉 + |V 〉)/√2, |A〉 ≡ (|H 〉 − |V 〉)/√2,
|R〉 ≡ (|H 〉 − i|V 〉)/√2, and |L〉 ≡ (|H 〉 + i|V 〉)/√2. The
normalized outputs A and B for each polarization state look
almost identical to the averaged result shown in Fig. 2. We
also point out that the linearity and the splitting ratio are very
stable over time due to the Sagnac geometry.

Previously reported continuously variable nonpolarizing
beam splitter schemes using a prism pair [18], a sapphire
disk [19], and a phase grating [20] were all input-polarization
dependent. Note that it was proposed in Ref. [21] that any
unitary operation can be implemented using bulk optics;
although, since the scheme is based on Mach-Zehnder in-
terferometers, it is inherently unstable. A particular version
(50:50 nonvariable beam splitter) of Ref. [21] has been
implemented in Ref. [22]. In this work, the continuously
variable nonpolarizing beam splitter scheme is based on
the displaced Sagnac interferometer and thus is completely
input-polarization independent as demonstrated in Fig. 2.
Furthermore, the use of the Sagnac interferometer ensures
long-term stability without active feedback locking.

To be sure that the displaced Sagnac splits the input
probability amplitude into two spatial modes A and B without
affecting the quantum state ρ, we have also performed the
quantum state tomography of the input qubit as well as the
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FIG. 2. (Color online) Data showing continuously variable out-
put ratio A : B = 1 − p : p, where p = sin2(2θ ) for the displaced
Sagnac interferometer. Each data point represents the averaged
normalized output of six input polarization states: |H 〉, |V 〉, |D〉,
|A〉, |R〉, and |L〉. The normalized output of each polarization state
appears almost identical to the averaged result shown here.

output qubit in modes A and B [23]. We observed that the
fidelity between the input and the output quantum states is
better than 0.982 ± 0.003 for all the polarization qubit states
we tested. Thus, the displaced Sagnac acts as a nearly ideal
identity operation for the polarization qubit except that it
diverts the amplitude into two different spatial modes: A

and B.
Equation (1) clearly states that to implement the depolariz-

ing quantum operation E(ρ) it is necessary to achieve a mixture
of the input quantum state ρ and the unpolarized state I/2 with
the weighting factors 1 − p and p, respectively. Note now that
the qubit states found at the outputs A and B are identical
to the input ρ but with the probability amplitudes 1 − p and
p, respectively. Thus, we first couple the output mode B into
a 2-m-long multimode fiber to transform a polarized input
to a completely unpolarized state. Here the depolarization
effect occurs due to intermodal dispersion and intramodal
dispersion in the multimode fiber which cause random
cross-coupling among orthogonal polarization modes [24].
Since the cross-coupling is strong in a multimode fiber, only
a short piece of multimode fiber is necessary. (We used a
2-m-long multimode fiber as it was available to us at the time of
the experiment.) We then combine the output of the multimode
fiber (after collimation) and that of A at a beam splitter (BS).
The 2-m-long multimode fiber (M31L02, Thorlabs) ensures
that the beam combination at the BS is a completely incoherent
process since the path length difference is orders of magnitude
larger than the single-photon coherence time, which is on the
order of hundreds of femtoseconds. Therefore, the quantum
state found at the two outputs of the BS is described precisely
as pI/2 + (1 − p)ρ, indicating that the input state ρ has gone
through the depolarizing quantum operation E(ρ) in Eq. (1).

To demonstrate that the outputs of the BS indeed correspond
to the quantum state after the depolarizing quantum operation,
we performed quantum state tomography on the output states
for six different input qubit states. The experimental data are
shown in Fig. 3. It is clear that, by increasing p, the qubit
states become more mixed, moving toward the center of the

FIG. 3. (Color online) Experimental data. As p is increased, the
qubit states become more mixed and hence move toward the center
of the Bloch sphere. The outer sphere represents p = 0 (pure states)
and the inner sphere represents p = 0.5. The arrows point to the data
points (i.e., qubit states) on the inner sphere.
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FIG. 4. (Color online) Real part of χ matrices of the depolarizing
quantum channel. I refers to the two-dimensional identity matrix.
X, Y , and Z correspond to Pauli operators. The process fidelities (in
comparison to the ideal operation) are (a) 0.966, (b) 0.994, (c) 0.998,
and (d) 0.997. The imaginary part of the χ matrices are almost zero
(between −0.04 and 0.04 at most)and hence are not shown.

Bloch sphere. Note that changing p is quite easy in our setup
as it requires only the rotation of the wave plates due to the
relation p = sin2(2θ ). It is important to point out that the
depolarizing quantum operation is an isotropic operation so
that the output state purity Tr[ρ2] does not depend on the input
state: it only depends on the choice p. As such, the depolarizing
quantum operation should only shrink the size of the Bloch
sphere, rather than making it asymmetric. This feature is well
demonstrated in Fig. 3: all the data points corresponding to
the depolarizing quantum operation of the same p, regardless
of the input state, should reside on the same sphere. In Fig. 3,
the arrows represent the qubit states after the depolarizing
quantum operation E(ρ) for p = 0.5 and they all lie on the

inner sphere representing all qubit states that have undergone
E(ρ) with p = 0.5. Also, Fig. 3 shows that all output states
for p = 1 reside at the center of the Bloch sphere, indicating
that a 2-m multimode fiber is sufficient to transform a pure
polarization state into a completely unpolarized state.

It is known that a quantum channel that implements
a particular quantum operation can be fully characterized
by performing quantum process tomography [25]. We have
carried out quantum process tomography for the depolarizing
quantum operation with various p and the resulting real parts
of χ matrices are shown in Fig. 4. Clearly, when p = 0, the
quantum process corresponds to an identity operation as it
should be [see Fig. 4(a)]. As p is increased, contributions from
the Pauli operations rise [see Figs. 4(b) and 4(c)], and when
p = 1, it is clear that the output state becomes a fully mixed
state regardless of the input state [see Fig. 4(d)]. The high
process fidelities for various p values indicate the robustness
of our setup to faithfully implement the fully controllable
depolarizing quantum operation.

In summary, we have reported an experimental realization
of a fully controllable depolarizing quantum operation for a
single-photon polarization qubit. Our scheme not only allows
continuous adjustment of the degree of depolarization but
also the output state is independent of the input quantum
state, as demonstrated with quantum state tomography and
quantum process tomography. Applications for a versatile
depolarizing quantum channel like the one reported in this
Brief Report should be found in many areas of photonic
quantum-information research, including studying the quan-
tum noise processes [1–6], approximating nonphysical quan-
tum operations [8,9], generating exotic quantum states [10,11],
etc. For instance, our scheme can be used to study how the de-
polarization effect affects the quantum-information processing
in an optical system, to generate maximally entangled mixed
states involving multiple photonic polarization qubits, to ex-
perimentally study the capacity of a quantum communication
channel, and to explore the effect of decoherence to multiqubit
entangled states [26].
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