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Experimental realization of a delayed-choice
quantum walk
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Many paradoxes of quantum mechanics come from the fact that quantum systems can

possess different features simultaneously, such as in wave-particle duality or quantum

superposition. In recent delayed-choice experiments, a quantum system can be observed to

manifest one feature such as the wave or particle nature, depending on the measurement

setup, which is chosen after the system itself has already entered the measuring device;

hence its behaviour is not predetermined. Here we adapt this paradigmatic scheme to

multi-dimensional quantum walks. In our experiment, the way in which a photon interferes

with itself in a strongly non-trivial pattern depends on its polarization, which is determined

after the photon has already been detected. This is the first experiment realizing a multi-

dimensional quantum walk with a single photon source and we present also the first

experimental simulation of the Grover walk, a model that can be used to implement the

Grover quantum search algorithm.
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T
he classical random walk (that is, the mathematical
description of a movement consisting of a sequence of
random steps) is a fundamental process in statistical

mechanics1, finding applications in various fields, from physics to
computer science, from economics to biology2–4. Interestingly,
random walks are a basis for many powerful classical algorithms.
The quantum walk5, the quantum mechanical analogue of the
classical random walk, behaves in a strikingly different way from
its classical counterpart, due to the quantum coherences between
the walker’s paths. Its fast diffusive behaviour is closely related to
the quadratic speedup of the Grover quantum search algorithm6.
Several applications of quantum walks have been found, in
simulating quantum circuits7, describing quantum lattice gas
models8 or exploring topological phases9,10. Another possible
application of quantum walks is the investigation of biophysical
systems, in particular the analysis and the simulation of the
energy transport in the photosynthesis process11,12.

Witnessing the strong interest in the topic, the uni-dimensional
quantum walk (that is, a quantum walk in which the movement
is only allowed on a line) has already been experimentally
implemented in a number of different physical systems, ranging
from neutral atoms in spin-dependent optical lattices to ions in a
linear ion trap, from photons in arrays of evanescently coupled
waveguides to optical setups with a fibre network loop and only
passive optical elements, for instance in refs 13–19. And yet, the
realization of multi-dimensional quantum walks (that is,
quantum walks with movement on more than one dimension)
is extremely challenging, due to the significant technological
effort required. Nevertheless, the multi-dimensional scenario
promises many interesting and important features that are not
present in the one-dimensional (1D) case, and that clearly deserve
to be observed and investigated in experiments. A noticeable
example is the implementation of the quantum search algorithm,
that outperforms the classical counterparts only when the
dimension of the walk is higher than one20–22. Note that 1D
quantum walks are not efficient for this task. A first step in
experimental 2D quantum walks has been recently reported in
ref. 23, where the classical interference effects of laser pulses
simulate the evolution of a quantum walker on a 2D lattice.

In this paper, we demonstrate the first delayed-choice
experiment applied to a 2D quantum walk. The delayed-choice
experiment, proposed by Wheeler24 and demonstrated in
different setups25–27, highlights one of the most intriguing
aspects of quantum mechanics: A photon, travelling in a Mach-
Zehnder interferometer, can or cannot self-interfere (and thus
behave as a wave or a particle) depending on the configuration of
the interferometer itself. In particular, it is possible to postpone
this choice after the photon has already passed the interference
stage or even after the photon has already been detected, hence
the name ‘delayed-choice’. While, in its standard version, the
choice is between having or not having interference, nothing
prevents one from realizing a scheme in which the choice
determines different interference patterns. Recognizing the role
of quantum interference in the time evolution of quantum
walks28, here we adapt the delayed-choice experiment to multi-
dimensional quantum walks and experimentally demonstrate the
delayed-choice 2D quantum walk. This is the first experiment
realizing a multi-dimensional quantum walk with a single photon
source. We also present the first experimental simulation of
the Grover walk, a model that can be used to implement the
Grover quantum search algorithm. In particular, we exploit the
protocol proposed in refs 29,30, where it has been shown that
the spatial probability distribution of the non-localized case
of the Grover walk (the 2D walk exploited for the quantum
search) can be obtained using only a single-qubit coin and a
quantum walk in alternate directions. The single-qubit coin is

realized with the polarization state of a single photon so that
interference by quantum particles is responsible for the rapid
spread of the walker’s position in the 2D lattice. The use of single
photons allows us to adapt the delayed-choice scheme to the
quantum walk scenario. In fact, an interesting feature of quantum
walks is that the probability distribution is affected by the
initial conditions, unlike their classical counterpart. In other
words, the initial state of the coin (that is, the polarization of the
single photon, in our case) determines the pattern of self
interference that gives rise to the distribution measured at the
end of the walk. In our experiment, the single photon shares
quantum entanglement with an ancillary photon and, because of
the entanglement, its polarization is not defined a priori.
Measurement on the ancillary photon, however, has the effect
of ‘inducing’ a decision on which interference pattern the
quantum walker has to follow. In our delayed-choice experi-
ment, this measurement choice occurs after the photon has gone
through the 2D quantum walk setup and been registered at the
single photon detector (SPD).

Results
Experimental implementation. Consider the experimental setup
sketched in Fig. 1. A photon pair is prepared via spontaneous
parametric down-conversion by pumping a type-II PPKTP
crystal with a 406.2-nm laser pulse. As the coherence length of the
pump laser is much shorter than the crystal length, we use the
Bell-state synthesizer scheme in ref. 31 to prepare a polarization-
entangled state jFþ i ¼ 1ffiffi

2
p jH;Hiþ jV ;Við Þ, where |HS and

|VS refer to horizontal and vertical polarization, respectively.
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Figure 1 | Experimental schematic. The photon pair is prepared in a Bell

state, jFþ i ¼ 1ffiffi
2

p ð jH;Hiþ jV;ViÞ, using the scheme in ref. 31 and sent to

Alice and Bob. One photon is delayed with respect to the other by using a

340-m optical fibre spool (L). Polarization controllers (PC) are used to

ensure that the Bell state is maintained after the optical fibres. Alice can

perform polarization projection measurement in any basis with a quarter-

wave plate (Q), a half-wave plate (H) and a polarizer. On Bob’s side, the

setup implements the 2D (x and y) quantum walk in the time domain. Coin 1

and Coin 2 perform Hadamard operations on x- and y-step operations,

respectively. Optical delay lines (L1BL4) were judiciously chosen so that the

photon arrival times could be uniquely mapped to the 2D lattice.
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One photon is then sent to Alice via a 340-m-long single-
mode fibre spool (which delays the detection of the photon
by B1,644 ns) for delayed-choice coin-state projection and
heralding the single-photon state on Bob’s side. The other
photon is sent to Bob to enter the 2D quantum walk setup.

The 2D lattice on which the walker can move is mapped to a
temporal grid for the arrival times of the single photon by using
the optical loop shown in Fig. 1. The optical loop implements the
step operation in two alternate directions x and y. Before each
step operation (x and y) is taken, the coin operation (which in our
experiment is chosen to be the Hadamard coin) is applied. As the
single-qubit coin is represented in the polarization state of a
single photon, the Hadamard coin operation is realized with a
half-wave plate, labelled as Coin 1 for x steps and Coin 2 for y
steps, respectively. The x-step operation is implemented with a set
of the polarizing beam splitter (PBS), which projects the single-
qubit coin into two separate output paths, two optical delay lines
L1 and L2, which respectively form the walker’s x positions, xþ 1
and x� 1 and the final PBS, which combines the two paths into a
single output mode: the walker’s x position corresponds to a
particular time of arrival of the single photon. The y step
operation is similarly implemented with different optical delay
lines L3 and L4, which correspond to the walker’s y positions,

yþ 1 and y� 1, respectively. The lengths (L1, L2, L3 and L4) of
the optical delays are judiciously chosen in such a way that any
arrival time corresponds just to a single position in the 2D lattice
after a specific number of steps. See Methods for details on the
entangled photon source and the 2D quantum walk setup.

After the first x–y step operation, the single photon returns to
the 50/50 beam splitter (BS) at which there exists 50% probability
that the photon exits the optical loop to be detected at the SPD.
Clearly, the probability distribution for the four time grids
(corresponding to a number of steps n¼ 1), reconstructed from
the time-correlated single-photon counting (TCSPC) events
would not exhibit any interesting behaviours. The single photon
that returns to the optical loop at this stage then undergoes
the 2D quantum walk at n¼ 2 and this result can be observed in
the TCSPC measurements. Note that, in our setup, increasing the
steps of the quantum walk is quite straightforward and there is no
need for further resources in increasing the steps. The limiting
factors are the overall loss in the optical loop and finding the
proper delay lengths to make sure that time grids are
experimentally identifiable. It is also interesting to note that, in
our scheme, it is possible to observe all successive steps of
quantum walks simultaneously, as the nþ 1th step and the nth
step are measured in the same TCSPC measurement and the
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Figure 2 | Evolution of probabilities in the delayed-choice 2D quantum walk. Results are obtained for numbers of steps (a) n¼ 1, (b) n¼ 2, (c) n¼ 3 and

(d) n¼4. The delayed-choice coin state is |LS, corresponding to Alice’s projection on |RS. (a,b) No quantum feature is observed up to the number

of steps n¼ 2, for which the theoretical quantum and classical distributions are the same. (c,d) From n¼ 3, quick spread out of the probability distribution,

typical of the 2D quantum walk, is clearly visible. This fast diffusive behaviour is due to the quantum coherences between the walker’s paths. The

asymmetry in the experimental data comes from the fact that x–y step operations are slightly imbalanced, due to different losses. S represents the similarity

between the theoretical and the experimental probability distributions.
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former is simply delayed with respect to the latter by the total
optical loop delay time. In particular, the latest arrival time
corresponding to a n¼ 4 2D lattice site is delayed by 535.4 ns with
respect to the n¼ 0 event. As Alice’s state projection and photon
detection occur much later than those of the loop delays in the 2D
quantum walk setup (we observe up to n¼ 4 events), our
experiment indeed satisfies the delayed-choice condition, that is,
the ‘choice’ is postponed until after the detection of the quantum-
walk photon. Details on the data acquisition and analysis can be
found in the Methods.

Delayed-choice 2D quantum walk. Figure 2 shows the experi-
mentally obtained probability distributions for the 2D quantum
walk with the single photon. The coin state is chosen to be |LS
by Alice’s |RS projection measurement in the delayed-choice
setting. The experimental data clearly show that the probability
distribution quickly spreads out and this is particularly evident
after n¼ 3. For instance, at n¼ 4, the classical walker’s mean
position would be (0, 0) and our quantum walker’s mean position
is calculated to be (� 0.30, 0.41), which is quite close to the
classical walker’s mean position. However, we start to see some-
thing interesting if we look at the spread of the probability
distribution {P(i,j)} measured with the variance defined as
v ¼

P
i;j Pði; jÞ j ri;j �m j 2, where ri,j is the position on the

lattice, and m is the mean position, that is, m ¼
P

i;j Pði; jÞri;j.
The quantum walker’s variance from Fig. 2d is 12.36, while the
classical walker’s variance, which can be evaluated easily from
classical probability, would be 8. Note that the quantum walker’s

mean position deviates slightly from the classical value of (0, 0)
because x–y step operations are somewhat imbalanced in the
experiment due to different losses.

The theoretical probability distribution {Pt(i,j)} and experi-
mental probability distribution {Pe(i,j)} can be compared and
quantified by evaluating the quantity defined as similarity

S({Pt(i,j)},{Pe(i,j)})¼
Pn

i;j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ptði; jÞPeði; jÞ

p� �2
. The similarity

between the theoretical probability distributions (not shown in
Fig. 2) and the experimentally obtained probability distributions
are displayed in Fig. 2c,d, where the fast diffusive behaviour of 2D
quantum walks is demonstrated.

Another unique feature of quantum walks is that the
probability distribution is affected by the coin state (whether it
was determined a priori or a posteriori does not matter). In Fig. 3,
we show the probability distributions of the 2D quantum walk
after n¼ 4 steps for different delayed-choice coin states and it is
straightforward to see that the coin state, which is determined
remotely after the photon has already been registered at the
detector, strongly affects the probability distribution.

Delayed-choice 2D Grover walk. We now discuss an important
application of our scheme, the simulation of the Grover walk. In
the range of 2D quantum walks that can be obtained for different
coin operations, particular attention has been given to the Grover
one20–22. This is a particular quantum walk that has recently
attracted wide interest as it can implement the 2D Grover search
algorithm20–22. In order to realize the standard Grover walk,
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Figure 3 | 2D quantum walk at n¼4 for different delayed-choice coin states. Alice’s projection of her photon onto |VS, |HS, |DS and |AS results in the

same delayed-choice coin states for Bob. It is clear that, in quantum walks, the probability distribution is affected by the delayed-choice coin states,

unlike their classical counterpart. In fact, there is a correspondence between the delayed-choice coin state and the particular direction of the X-Y plane, in

which the probability is enhanced30.
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one requires a 4D coin as illustrated in Fig. 4a. Moreover, if
the coin is embodied by two qubits, the coin operation that
one has to apply each time step is a particular entangling gate,
which could be very difficult to realize. Even if Schreiber et al.23

were able to implement an entangling gate of a specific form,
realizing the one required for the Grover walk in their setting
is not a trivial extension. In the Grover walk, the walker is
always localized unless the coin is in the particular initial state
1
2(|0S� |1S� |2Sþ |3S). See Methods for details on the Grover
walk.

It was shown in refs 29,30 that the non-localized case of the 2D
Grover walk can be simulated on a 2D lattice using the Hadamard
coin operation and a single-qubit coin with the initial coin state
1ffiffi
2

p (|0S� i|1S), as illustrated in Fig. 4b. This can be straightfor-
wardly realized with our setting and, in this case, the coin state
corresponds to the right circular polarization state |RS, which is
prepared remotely by Alice’s delayed-choice projection on |LS.
As shown in Fig. 5, the experimentally observed probability
distribution agrees well with the theoretically calculated ideal 2D
Grover walk using a 4D coin and the Grover coin operation.

Discussion
So far, we have considered the cases in which the coin states are
prepared a posteriori in pure quantum states. One can then ask
whether a walk with the coin in a mixed state would exhibit a
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Figure 4 | Illustrations of the Grover walk. (a) The 2D Grover walk.

The Grover coin operation has a 4D space and the walker takes steps in one

of the four directions in the position space. (b) The alternate 2D quantum

walk implemented in our work. Here, each coin operation has a 2D space and

the walker moves in one of the two directions for each step operation.
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walk is due to the interference between the possible paths. A walk with the maximally mixed coin state can exhibit quantum interference as far as

decoherence is negligible during the quantum walks.
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similar quantum behaviour. For a classical pulse, such a scenario
is normally not straightforward to implement without a
numerical sum of the experimental data from different settings.
However, in our scheme where we make use of entangled photons
and projection measurements for the coin state preparation, we
can easily realize a 2D quantum walk experiment with a mixed
initial coin state by simply removing the polarization projection
optical element from Alice’s setup. As Alice and Bob share a
polarization-entangled photon pair, without the polarization
projection in Alice’s side, the initial coin state of Bob’s photon
is in a maximally mixed state. The experimental result is shown in
Fig. 6 and, interestingly, the 2D quantum walk with the
maximally mixed initial coin state shows quantum behaviours.
In particular, the probability distribution obtained in this case is
the same as the one when the initial state of the coin is pure and
equal to |LS or |RS (ref. 30).

In conclusion, we report the first realization of a delayed-choice
experiment in a quantum-walk scenario. A striking aspect of
quantum mechanics is that the measurement apparatus itself
determines which feature the quantum system under investiga-
tion manifests. In other words, the feature of the quantum
particle which will be manifested at the measurement is not
predetermined. In our delayed-choice experiment with quantum
walks, the self-interference pattern depends on the polarization of
the photon embodying the walker. This polarization is decided,
due to quantum correlations, by a successive measurement on an
ancillary photon. The time delay between the actual interference
stage (and photon detection) and the ancilla measurement
ensures that the pattern cannot be predetermined. The experi-
mental results clearly show the characteristics of quantum walks
and, with the use of single photons, we have directly demon-
strated 2D quantum walks due to quantum interference, rather
than simulating the effects based on wave mechanics32. We have
also experimentally shown the correspondence between the
Grover walk and alternate walk with a single-qubit coin. Our
scheme can efficiently be expanded to implement 2D quantum
walks on the order of hundreds of steps, and demonstration of
such massive quantum parallelism might bring out their real-life
applications. Furthermore, the scheme presented in this paper can
be slightly modified to demonstrate higher-dimensional quantum
walks33, a very striking result for the simulation of multi-particle
evolution and generation of genuine multi-partite entanglement.
As specified in Schreiber et al.23, the increasing of the dimension
of the lattice on which the walker can move in a standard
multi-dimensional quantum walk requires the exploitation of
additional degrees of freedom. The reason is that the Hilbert
space of the coin grows as well (and exponentially with the
number of dimensions34). However, the coin remains a single
qubit in our scheme, independently of the dimension of the
position lattice. This is clearly an advantage in terms of
experimental resources, as the only change that has to be done
is an additional stage (such as the ones denoted as x and y in
Fig. 1) for each extra dimension. Therefore, the required number
of optical elements scales linearly. This reflects the novel aspect of
our scheme, not just the time-multiplexing approach or the use of
a heralded single-photon source. Note, however, that the number
of possible arrival times of the photon scales also in this case as
Nd, with N the total number of steps of the walk and d the
dimension of the lattice.

Methods
Entangled photon source. The pump laser is a diode laser operating at 406.2 nm
with the full width at half maximum (FWHM) bandwidth of 1.1 nm. The laser has
120 ns FWHM pulse width and operates at the repetition rate of 1.25MHz. The
average power of the pump laser is measured to be 10mW. The type-II PPKTP
crystal has the dimension of 1� 2� 10mm3 and is phase-matched at 78.8 �C for

degenerate (812.4 nm) and non-collinear (±1.4� with respect to the pump
direction) photon-pair generation via spontaneous parametric down-conversion.
To prepare a pure polarization-entangled photon pair via type-II SPDC, it is
essential that the coherence time of the pump must be much bigger than the
dimension of the nonlinear crystal. As this condition cannot be satisfied in our
case, we made use of the Bell-state synthesizer scheme in ref. 31 to prepare a
polarization-entangled state jFþ i ¼ 1ffiffi

2
p ð jH;Hiþ jV;ViÞ ¼ 1ffiffi

2
p ð jD;Di

þ jA;AiÞ ¼ 1ffiffi
2

p ð jL;Riþ jR; LiÞ where jDi � ðjHiþ jViÞ=
ffiffiffi
2

p
, jAi �

ðjHi� jViÞ=
ffiffiffi
2

p
, jLi � ð jHiþ i jViÞ=

ffiffiffi
2

p
and jRi � ð jHi� i jViÞ=

ffiffiffi
2

p
.

This scheme allows us to generate high-quality polarization-entangled photon pairs
regardless of crystal thickness, pump bandwidth and spectral filtering. Quantum
state tomography performed on the experimental two-photon state exhibits indeed
high-quality two-photon polarization entanglement with concurrence of 0.942 and
fidelity (compared with the ideal |FþS state) of 0.960.

Quantum walk step operation. For the x-step operation, L1E127.8ns and
L2E107.2 ns. Therefore, at the output of the second PBS, the temporal separation is
20.6ns. For the y-step operation, L3E4.7 ns and L4E0.6ns so the effective temporal
separation is 4.1ns. The common path Lc in the optical loop is 1.3ns. After com-
pleting the first x–y step operation (n¼ 1), the walker’s position corresponds to one of
the four (x,y) time grids: (� 1,� 1),(� 1,þ 1),(þ 1,� 1) and (þ 1,þ 1). At the
second step (n¼ 2), each of the temporal modes from the first step branches into four
different modes, leading to nine distinct temporal modes for the 2D quantum walk.
After the nth step, the total number of distinct temporal modes is (nþ 1)2.

Efficiency of the setup. The probability that a single photon at the input of the
x-step operation (that is, just before Coin 1 in Fig. 1) is found at SPD is roughly
Zdet� Zcycle, where the detector efficiency at 812 nm is roughly Zdet¼ 0.5 and the
per cycle transmittance is Zcycle¼ 0.207, which includes the splitting ratio of the BS,
the fibre attenuation coefficient (3 dB km� 1), the fibre coupling efficiency and the
FC connector loss. The present setup has rather high loss because the experimental
setup was built using off-the-shelf components. Thus, there is plenty of room for
improvement, for instance, by optimizing the splitting ratio of the BS, and by using
low-loss fibre couplers and FC connectors.

Data acquisition and analysis. To reconstruct the 2D quantum walk probability
distributions from the events distributed in the time grid, it is necessary to measure
the histogram of time-of-arrival events for the single photons. This was done by
observing the coincidence events between Alice’s and Bob’s detectors (Perkin-
Elmer AQR) using a time-correlated single-photon counting (TCSPC) device
(Picoharp 300 at 8 ps per bin resolution). A coincidence peak in the time grid
typically has the width of 0.6 ns at FWHM so as to ensure that no coincidence
peaks are overlapped, we have judiciously chosen the optical delays (L1BL4) such
that neighbouring peaks are at least 4.1 ns separated. To extract the data, a 2-ns
window was defined for each time grid and the total coincidence counts within the
2-ns window was recorded. The raw coincidence counts were then corrected for
accidental counts and losses. The 2D quantum walk probability distribution P(x,y)
for the time grid (x,y) was obtained by normalizing the corrected coincidence
counts with the total coincidence counts for a particular step n. Typical data
accumulation time was 5 h per probability distribution.

Grover walk. Let us denote the Hilbert spaces of the coin subsystem and the
walker subsystem as HC and HW, respectively, and we choose {|x, ySW} as a basis
of HW. Differently from the scheme exploited in this paper, where the walks along
the horizontal axis and the vertical axis are alternated, the standard Grover walk
has full freedom at each point of the space to make vertical (up/down) and hor-
izontal (left/right) moves. Reflecting these four possibilities, the coin operation is
defined in a 4D space. The single time step is a sequence of the coin operation
(acting only on the coin subspace)

Ĝ ¼ 1
2

� 1 1 1 1
1 � 1 1 1
1 1 � 1 1
1 1 1 � 1

0
BB@

1
CCA ð1Þ

and the conditional shift operation

Ŝ ¼ j0iCh0 j �
X
i;j2Z

j i� 1; j� 1iWhi; j j þ j1iCh1 j �
X
i;j2Z

j i� 1; jþ 1iWhi; j j

þ j2iCh2 j �
X
i;j2Z

j iþ1; j� 1iWhi; j j þ j3iCh3 j �
X
i;j2Z

j iþ 1; jþ 1iWhi; j j :

ð2Þ

notice that, if the coin is embodied by a pair of qubits, Ĝ is an entangling gate. This
standard Grover walk is interesting, in particular, because one can exploit this
scheme for the implementation of the Grover search algorithm6. Moreover, it has
been proven that, for almost all the possible initial conditions of the coin (with the
walker initially starting at the origin), one can observe a striking phenomenon of
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localization35. This means that the probability of finding the walker at the origin
does not go asymptotically to zero for a number of time steps going to infinity.

In our scheme, the coin is embodied by a two-level system, with the coin
operation given by the Hadamard gate

Ĥ ¼ 1ffiffiffi
2

p 1 1
1 � 1

� �
: ð3Þ

In this case, there are two different conditional shift operations,

Ŝx ¼ j0iCh0 j �
X
i;j2Z

j i� 1; jiWhi; j j þ j1iCh1 j �
X
i;j2Z

j iþ 1; jiWhi; j j ð4Þ

and

Ŝy ¼ j0iCh0 j �
X
i;j2Z

j i; j� 1iWhi; j j þ j 1iCh1 j �
X
i;j2Z

j i; jþ 1iWhi; j j : ð5Þ

the evolution of the system is an alternate sequence of a coin operation followed by
Ŝx and a coin operation followed by Ŝy . It has been shown that this alternate walk is
able to perfectly reproduce the spatial probability distribution of the non-localized
case of the Grover walk29,30. Moreover, this model has already been studied as a
feasible scenario to obtain 2D Anderson localization36.
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