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Abstract: Generation of time-bin entangled photon pairs requires the
use of the Franson interferometer which consists of two spatially separated
unbalanced Mach-Zehnder interferometers through which the signal and
idler photons from spontaneous parametric down-conversion (SPDC) are
made to transmit individually. There have been two SPDC pumping regimes
where the scheme works: the narrowband regime and the double-pulse
regime. In the narrowband regime, the SPDC process is pumped by a
narrowband cw laser with the coherence length much longer than the path
length difference of the Franson interferometer. In the double-pulse regime,
the longitudinal separation between the pulse pair is made equal to the
path length difference of the Franson interferometer. In this paper, we
propose another regime by which the generation of time-bin entanglement
is possible and demonstrate the scheme experimentally. In our scheme,
differently from the previous approaches, the SPDC process is pumped by
a cw multi-mode (i.e., short coherence length) laser and makes use of the
coherence revival property of such a laser. The high-visibility two-photon
Franson interference demonstrates clearly that high-quality time-bin entan-
glement source can be developed using inexpensive cw multi-mode diode
lasers for various quantum communication applications.
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1. Introduction

Entanglement is one of the most fascinating non-classical properties [1]. It is also a very
important resource for many quantum information applications such as quantum computa-
tion [2], quantum cryptography [3], quantum teleportation [4–6], and quantum metrology [7–9].
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For photons, polarization-entanglement [10–12] is widely utilized in quantum information re-
search [13, 14], but it is not ideal for fiber-based quantum communication applications due to
the polarization mode dispersion. Time-bin entanglement is often the best choice for such ap-
plications as it is robust against various decoherence effects resulting from long-distance fiber
transmission [15, 16].

The generation scheme for time-bin entanglement is based on the Franson interferometer
(FI) [17], which consists of two spatially separated unbalanced Mach-Zehnder interferome-
ters through which the signal and idler photons from spontaneous parametric down-conversion
(SPDC) are made to transmit individually, see Fig. 1. In quantum interference experiments, it is
essential to ensure that the relevant quantum probability amplitudes are made indistinguishable
and in the experiments involving the FI, this is achieved by choosing proper pumping schemes.
There have been two SPDC pumping regimes where the scheme works: the narrowband regime
and the double-pulse regime. In the narrowband regime [18–23], the SPDC process is pumped
by a narrowband cw laser with the coherence length much longer than the path length differ-
ence of the FI. In the double-pulse regime [24–27], the longitudinal separation between the
pulse pair is made equal to the path length difference of the FI.

In this paper, we propose another regime by which the generation of time-bin entanglement
is possible and demonstrate the scheme experimentally. In our scheme, differently from the
previous approaches, the SPDC process is pumped by a cw multi-mode (i.e., short coherence
length) laser. By making use of the coherence revival property of a cw multi-mode laser, ob-
served for the first-order coherence in [28, 29] and for the second-order coherence in [30], we
demonstrate high-visibility quantum interference due to two-photon energy-time entanglement.
Our results clearly show that high-quality time-bin entanglement source can be developed using
inexpensive cw multi-mode diode lasers, as opposed to using expensive narrowband lasers or
pulsed lasers, for various quantum communication applications.

2. Theory

We begin by briefly introducing the Franson interferometer shown in Fig. 1 [17]. A pair of
photons, typically called the signal and the idler photons, are generated from the SPDC process
in a nonlinear crystal. Each photon is directed to an unbalanced Mach-Zehnder interferometer
(MZI) and the photon may take the long path (L1 and L2) or the short path (S1 and S2) of the
MZI. To ensure that there is no first-order interference at the output of the MZI, the path length
difference between the long path and the short path is made much larger than the coherence

L1

D1

t1 t2

D2

t1-t2

S1

L2

S2
Source

Fig. 1. The schematic of Franson interferometer. Post-selecting the central peak in the TC-
SPC histogram allows one to prepare/detect the time-bin entanglement. For this to happen,
the pump laser for the SPDC process must meet certain conditions. See text for details.
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length of the input (signal and idler) photon. The photons are then detected at the single-photon
detectors (D1 and D2) located at the output ports of the MZI and the difference of photons’ time
of arrival τ = t1 − t2 is recorded by using Time-Correlated Single-Photon Counting (TCSPC)
electronics.

It is well-known that the TCSPC histogram exhibits three distinctive peaks as shown in Fig. 1
and they come from the four probability amplitudes for joint detection of the photon pair:
|S〉1|S〉2, |L〉1|L〉2, |S〉1|L〉2, and |L〉1|S〉2. The left (right) peak is due to |S〉1|L〉2 (|L〉1|S〉2) and
the central peak is due to both |S〉1|S〉2 and |L〉1|L〉2 which is why the central peak is twice as
tall as the side peaks. Note that the separation between peaks is determined by the optical path
length difference of the MZI ΔL1,2 = L1,2 − S1,2 and the width of the peak (typically around
1 ∼ 2 ns) is mostly determined by the resolution of the electronics. Since Lc � ΔL1,2, where
Lc is the coherence length of the single-photons (signal and idler photons), there is no first-
order interference observed at either detectors D1 and D2. We then further impose the condition
ΔL1,2 � Lp, where Lp is the coherence length of the SPDC pump laser, and post-select only
the central peak of the TCSPC histogram by using a narrow coincidence window. We have thus
obtained a time-bin entangled state

|ψ〉= 1√
2
(|S〉1|S〉2 + eiφ |L〉1|L〉2), (1)

where φ is the phase difference between two probability amplitudes, which can be controlled by
scanning ΔL1,2 of the MZI. The visibility drops if the side peaks are not completely excluded.

The description so far is the narrowband regime as the pump bandwidth should be sufficiently
narrow to satisfy ΔL1,2 � Lp, which is essential for providing quantum coherence between
|S〉1|S〉2 and |L〉1|L〉2 [18–23]. Another way to ensure quantum coherence between the two am-
plitudes |S〉1|S〉2 and |L〉1|L〉2 is to pump the SPDC process with a pair of coherent pulses, the
double-pulse regime, whose longitudinal separation is identical to ΔL1,2 [24–27]. Unlike these
schemes, our new scheme for generating time-bin entanglement does not use the narrowband
pumping nor coherent pulses. In fact, the pump laser in our scheme has a coherence length
much smaller than the path length difference of the MZI, Lp � ΔL1,2. Instead, our scheme is
based on the coherence revival property of multi-mode emission from a cavity [28–30].

Let us begin by describing the SPDC process pumped by a multi-mode laser. The two-photon
state from multi-mode pumped SPDC can be written as a mixed state [8, 30]

ρ =

∫
dωp S (ωp) |ψ〉〈ψ|. (2)

Here, S (ωp) is the spectral power density of the pump laser given as the sum of multiple
incoherent longitudinal modes,

S (ωp) =
∑N

n=−N S0 (ωp)δ (ωp −ωp0 −nΔωp)

∑N
n=−N S0 (ωp0 +nΔωp)

, (3)

where ωp0, Δωp, and n are the central frequency of the pump, the mode spacing, and the mode
number and we have assumed that the spectral power density has a Gaussian spectral profile

with the bandwidth θ , S0 (ωp)∼ exp

[
− (ωp−ωp0)

2

2θ 2

]
. The two-photon quantum state of SPDC

|ψ〉, pumped by a single-mode laser with frequency ωp is given as

|ψ〉=
∫

dωsdωi δ (Δω)sinc(Δkl/2)eiΔkl/2|ωs,ωi〉, (4)

where Δω ≡ ωp −ωs −ωi, Δk ≡ kp − ks − ki, and l is the thickness of the SPDC crystal. The
subscripts p, s, and i refer the pump, signal, and idler photons, respectively. Note that |ωs,ωi〉=

(C) 2013 OSA 21 October 2013 | Vol. 21,  No. 21 | DOI:10.1364/OE.21.025492 | OPTICS EXPRESS  25495
#197125 - $15.00 USD Received 4 Sep 2013; revised 6 Oct 2013; accepted 9 Oct 2013; published 17 Oct 2013



a†
s (ωs)a

†
i (ωi)|0〉 where a†

s (ωs) (a†
i (ωi)) represents the creation operator for the signal (idler)

photon of frequency ωs (ωi) and |0〉 is the vacuum.
Let us now suppose that the signal (idler) photon is sent to D1 (D2) through the unbalanced

MZIs in Fig. 1. We also assume that interference filters are placed in front of the detectors

and they have the Gaussian transmission function φ(ω) = 1√
θf
√

π
exp

[
− (ω−ω0)

2

2θf
2

]
, where ω0

and θf are the central frequency and bandwidth of the filter, respectively, and
∫ |φ(ω)|2dω =

1. Consequently, the positive frequency component of the electric field operator for a single-

photon detector Dj∈{1,2} at time t is expressed as E(+)
Dj

(t) =
∫

dω φ(ω)e−iωtaDj(ω), where

aDj(ω) is the annihilation operator for a photon of frequency ω at the detector Dj.
The joint detection rate between the two detectors D1 and D2 is then proportional to

R ∝
∫ Δτ

−Δτ
dτ tr[ρE(−)

D1
(t)E(−)

D2
(t + τ)E(+)

D2
(t + τ)E(+)

D1
(t)], (5)

where E(+)
Dj∈{1,2}(t) = 1√

2

[
E(+)

S j
(t)+E(+)

L j
(t −ξ j)

]
, ξ j = ΔLj/c with c being the speed of

light in vacuum, and τ = t1 − t2. In evaluating the integral in Eq. (5), we set the value
of Δτ such that only the central peak in the TCSPC histogram (see Fig. 1) is selected

(i.e., two side peaks are thrown out). Thus, the field operator E(+)
D2

(t + τ)E(+)
D1

(t) becomes
1
2

[
E(+)

S2
(t + τ)E(+)

S1
(t)+E(+)

L2
(t + τ −ξ2)E

(+)
L1

(t −ξ1)
]

without containing the terms represent-

ing the side peaks E(+)
S2

E(+)
L1

and E(+)
L2

E(+)
S1

. Therefore, Eq. (5) becomes

R ∝
∫

dτ tr
[
ρ
(

E(−)
S2

(t + τ)E(−)
S1

(t)+E(−)
L2

(t + τ −ξ2)E
(−)
L1

(t −ξ1)
)

×
(

E(+)
S2

(t + τ)E(+)
S1

(t)+E(+)
L2

(t + τ −ξ2)E
(+)
L1

(t −ξ1)
)]

. (6)

Considering the fact that the signal (idler) photon propagates toward D1 (D2) and given that the

field operators for the signal and the idler photons are given as E(+)
j (t) =

∫
dω φ(ω)e−iωta j(ω)

with j ∈ {s, i}, we can write E(+)
S1

(t) = 1√
2
E(+)

s (t), E(+)
S2

(t) = 1√
2
E(+)

i (t), and similarly for

E(+)
L1

(t) and E(+)
L2

(t). After substituting Eq. (2) for ρ in Eq. (6), we finally obtain the joint
detection rate

R =
1
2
+

Γ
2

∑N
n=−N Seff (ωp0 +nΔωp)cos((ωp0 +nΔωp)(ξ1 +ξ2))

∑N
n=−N Seff (ωp0 +nΔωp)

, (7)

where Γ= exp
[−θ 2

f (ξ1 −ξ2)
2/8

]
and Seff (ωp) identical to S0 (ωp) except that the bandwidth

θ is replaced with the effective bandwidth θeff (calculated from 1/θ 2
eff = 1/θ 2 + 1/θ 2

f ). We
have assumed that the filter bandwidth θf is sufficiently narrower than the natural bandwidth of
SPDC (calculated from sinc(Δkl/2)) so that the SPDC spectral amplitude is equal to the filter
transmission function φ(ω).

Figure 2 shows the theoretical results of Eq. (7). Here we have assumed that the multi-mode
pump laser is centered at λp0 = 405 nm with the bandwidth of σ = 0.28 nm and the mode
spacing is Δλp = 0.0289 nm. The SPDC photons are assumed to be generated at a type-I BBO
crystal of thickness l = 6 mm and centered at λ0 = 810 nm. The bandwidth of the filter trans-
mission function is assumed to be σf = 17 nm. These parameters are converted to frequencies
by using the following relations ω0 = 2πc/λ0, θ = 2πcσ/λ 2

0 , and Δωp = 2πcΔλp/λ 2
p0. Note

that, at these conditions, the multi-mode pump laser exhibits the coherence revival at the period
of Lr = λ 2

p0/Δλp = 5.668 mm [29, 30].
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Fig. 2. Theoretical plot of Eq. (7) as a function of ΔL1 for different ΔL2. (a) ΔL2 = 5.668
mm and (b) ΔL2 = 11.336 mm. (c) The joint count rate when ΔL1 and ΔL2 are simultane-
ously scanned exhibits the coherence revival property [29, 30].

We first consider the cases where one of the MZIs is unbalanced at integer multiples of
Lr. Figures 2(a) and 2(b) show the coincidence rates as a function of ΔL1, while ΔL2 is fixed
at Lr and 2Lr, respectively. As demonstrated in the theoretical plots, two-photon time-bin in-
terference fringes are expected whenever the scanning ΔL1 becomes identical to ΔL2 within
the single-photon coherence length. It is important to point out that, since the individual MZI
is unbalanced, there is no first-order interference. Note also that, in this case, the interfer-
ence fringes exhibit modulation at the wavelength of SPDC photons λ0 = 810 nm. Consider
now that both ΔL1 and ΔL2 are scanned simultaneously shown in Fig. 2(c). In this case,
two-photon interference is expected at the modulation period equal to the pump wavelength
λp0 = 405 nm. Furthermore, coherence revival of the two-photon time-bin interference fringes
is expected at the period of Lr = λ 2

p0/Δλp = 5.668 mm [29, 30] which is due to the fact that

Γ = exp
[−θ 2

f (ξ1 −ξ2)
2/8

]
in Eq. (7) is not degraded as long as ΔL1=ΔL2. However, if ΔL1

differs significantly from ΔL2, Γ degrades quickly so the revival of two-photon interference
does not occur as shown in Figs. 2(a) and 2(b).

3. Experiment

To demonstrate high-visibility two-photon quantum interference due to time-bin entanglement
using the multi-mode pump laser, it is essential that the path length differences of the MZIs
are set integer multiples of Lr and the side peaks due to |S〉1|L〉2 and |S〉2|L〉1 are sufficiently
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Circuit
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Fig. 3. Experimental setup. PBS: polarization beam splitter, QWP: quarter wave plate,
D1 and D2: single photon detectors.

far away from the main peak. Considering the detector jitter and TCSPC electronics resolution,
about 3 ns separation is desired and this translates to ΔL1,2 = 900 mm. To avoid practical
problems involving MZIs with such a large path length difference while still demonstrating
the essential features of time-bin entanglement using multi-mode pumped SPDC, we employ
the postselection-free energy-time entanglement scheme in [22]. In this scheme, beam splitters
in the MZIs are replaced with polarization beam splitters and the input state is given in the
form of a polarization entangled state. As a result, the |S〉1|L〉2 and |S〉2|L〉1 amplitudes which
generate the side peaks do not occur naturally and therefore no postselection is necessary. Note
however that, since the photonic path (long and short) is correlated to the polarization (vertical
and horizontal), it is necessary to erase the polarization information by projecting it onto the
45◦ oriented polarizers [22].

The experimental setup is shown in Fig. 3. Type-I SPDC photon pairs generated in a 6-
mm-thick β -BaB2O4 crystal pumped by a 405 nm multi-mode diode laser are used for the
experiment. For the 405 nm pump laser, the coherence length and the first-order coherence
revival period are measured as Lp = 216 µm and Lr = 5.668 mm, respectively. From these
results, we can find that the mode spacing of the pump laser is Δωp = 3.33 × 1011 Hz as
simulated in the previous section. The degenerate phase matching condition was applied for the
SPDC so the wavelengths of both signal and idler SPDC photons are centered at 810 nm.

First, the polarization entangled state of the form |Φ+〉 = 1√
2
(|H〉1|H〉2 + |V 〉1|V 〉2), where

|H〉 and |V 〉 are horizontal and vertical polarization, is prepared by interfering the two photons
at a beam splitter [10, 11]. Second, each photon of the polarization entangled state is sent to a
unbalanced Michelson interferometer which consists of a polarizing beam splitter (PBS) and
two quarter wave plates (QWP). This scheme ensures that the |H〉 photon at the input of the
PBS takes the long path (|L〉1 or |L〉2) of the interferometer and exits the PBS as the |V 〉 photon.
Similarly, |V 〉 photon at the input of the PBS takes the short path (|S〉1 or |S〉2) of the interfer-
ometer and exits the PBS as the |H〉 photon. Finally, 45◦ oriented polarizers are used to erase
the polarization information. As a result, the polarization-entangled state has been converted to
the time-bin entangled state of the form in Eq. (1) with no need for TCSPC postselection. Note
that the relative phase φ can be adjusted by scanning either ΔL1 or ΔL2.

The experimental data are shown in Fig. 4. Figures 4(a) and 4(b) show the coincidence count
rate as a function of ΔL1 while ΔL2 is fixed at 5.668 mm and 11.336 mm, respectively. As
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Fig. 4. Experimental data. The coincidence count rate as a function of ΔL1 for different
ΔL2 values. (a) ΔL2 = 5.668 mm and (b) ΔL2 = 11.336 mm. The two-photon interference
visibility is measure to be 95% for both cases. (c) ΔL1 and ΔL2 are scanned simultaneously.
The two-photon interference visibility is measured to be 93%. The experimental data agree
well with the theoretical results shown in Fig. 2.

expected in Eq. (7) and in Figs. 2(a) and 2(b), two-photon quantum interference due to time-
bin entanglement occurs only when the condition ΔL1 = ΔL2 is satisfied. Figure 4(c) shows
the coincidence count rate when both ΔL1 and ΔL2 are simultaneously scanned. In this case,
as expected in Fig. 2(c), recurrence or revival of two-photon interference is observed with the
period of 5.668 mm. The observed quantum interference visibilities are 95% for Fig. 4(a) and
4(b) and 93% for Fig. 4(c). Since the visibility threshold for the two-photon quantum interfer-
ence for the Bell’s inequality violation is 70.7% [31], the experimental data in Fig. 4 show that
the photon pair is time-bin entangled, hence suitable for a variety of quantum communications
applications.

4. Conclusion

We have shown in theory and in experiment that time-bin entangled photon pairs can be gen-
erated with the SPDC process pumped with a cw multi-mode laser. Unlike previous schemes
where the pump laser must have coherence length longer than the path length difference of the
ranson interferometer [18–23] or the SPDC process must be pumped with a pair of coherent
laser pulses whose spatial separation is equal to the path length difference of the Franson in-
terferometer [24–27], our scheme makes use of a unique coherence revival property of the cw
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multi-mode laser for generating a time-bin entangled photon pair [28–30]. Clearly, the main
difference between the multi-mode cw laser and the mode-locked pulsed laser is the lack of or
presence of coherence among the spectral modes. This point is clearly described in Eq. (3) in
which the spectral power density of the cw multi-mode laser is given as the incoherent sum of
multiple equally-spaced longitudinal modes. We have shown that it is nevertheless possible to
use such a laser in the Franson interferometer to prepare time-bin entangled photon pairs. Note
that the coherence revival feature of the pump laser, which we make use of for generating the
two-photon time-bin entanglement, comes from the fact that the spectral modes are equally-
spaced albeit with no phase coherence. Thus, our scheme is not applicable to SPDC pumped
with a chaotic light source, e.g, a blue light emitting diode [32].

As multi-mode diode lasers suitable for SPDC pumping are widely available at a low cost,
we believe our results offer a wide variety of applications in preparing time-bin entangled pho-
ton pairs inexpensively and reliably for various quantum information tasks, such as quantum
cryptography, quantum communication, and quantum computation.
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