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We advocate a simple multipole expansion of the polarization density matrix. The resulting multipoles appear
as successive moments of the Stokes variables and can be obtained from feasible measurements. In terms of
these multipoles we construct a whole hierarchy of measures that accurately assess higher-order polarization
fluctuations.
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I. INTRODUCTION

The standard notion of polarization comes from the
treatment of light as a beam. This hints at a well-defined
direction of propagation, and thus at a specific transverse plane,
wherein the tip of the electric field describes an ellipse. This
polarization ellipse can be elegantly visualized by using the
Poincaré sphere and is determined by the Stokes parameters,
the degree of polarization being simply the length of the Stokes
vector [1].

This geometric representation not only provides remarkable
insight but also greatly simplifies otherwise complex problems
and, as a result, has become an indisputable tool to deal with
polarization phenomena. However, the necessity of addressing
new issues, such as highly nonparaxial fields [2], narrow-
band imaging systems [3], and the recognition of associated
propagation questions [4], has brought about significant
modifications of this simple classical picture [5–13].

In the quantum domain, the classical setting can be
immediately mimicked in terms of the Stokes operators, which
can be obtained from the Stokes parameters by quantizing the
field amplitudes [14]. However, the appearance of hurdles such
as hidden polarization [15], the fact that the Poincaré sphere
cannot accommodate photon-number fluctuations [16], and the
difficulties in defining polarization properties of two-photon
entangled fields [17], to cite only a few examples, show that
the resulting theory is insufficient.

The root of these difficulties can be traced to the fact that
classical polarization is chiefly built on first-order moments of
the Stokes variables, whereas higher-order moments can play
a major role for quantum fields. Polarization squeezing [18], a
nonclassical effect that is actually defined only by the variances
of the Stokes operators, illustrates that point in the most clear
way.

Nowadays, there is a general consensus in that a full
understanding of the subtle polarization effects arising in the
realm of the quantum world would require a characterization
of higher-order polarization fluctuations, as it happens in
coherence theory, where one needs, in general, a hierarchy
of correlation functions. Some results along these lines have
already been reported, but either they use magnitudes difficult
to determine in practice, such as distances [19], generalized

visibilities [20–23], and central moments [24], or they go only
up to second order [25,26], and the pertinent extensions are
difficult to discern.

In this paper, we propose a systematic and feasible solution
to such a fundamental and longstanding problem. To that end,
we resort to a multipole expansion of the density matrix that
naturally sorts successive moments of the Stokes variables. The
dipole term, being just the first-order moment, can be identified
with the classical picture, while the other multipoles account
for higher-order moments. The probability distribution for
these multipoles provides thus a complete information about
the polarization properties of any state; in terms of it we
propose a suitable measure for the quantitative assessment
of those fluctuations.

II. SETTING THE SCENARIO

Throughout, we assume a monochromatic quantum field
specified by two operators, âH and âV , representing the
complex amplitudes in two linearly polarized orthogonal
modes, which we denote as horizontal (H ) and vertical (V ),
respectively. The Stokes operators can be concisely defined as

Ŝμ = 1

2
(â†

H â
†
V ) σμ

(
âH

âV

)
, (2.1)

the subscript † denoting the Hermitian adjoint. The Greek
index μ runs from 0 to 3, where σ0 = 1 and {σk} (k = 1,2,3)
are the Pauli matrices.

Note carefully that Ŝ0 = N̂/2, where N̂ = â
†
H âH + â

†
V âV is

the operator for the total number of photons. On the other hand,
with our definition the average of Ŝ = (Ŝ1,Ŝ2,Ŝ3) differs by a
factor of 1/2 from the classical Stokes vector [14]. However,
in this way {Ŝk} satisfy the commutation relations of the SU(2)
algebra

[Ŝk,Ŝ�] = iεk�m Ŝm, (2.2)

where εk�m is the Levi-Civita fully antisymmetric tensor.
This noncommutability precludes the simultaneous exact
measurement of the physical quantities they represent, which
can be formulated quantitatively by the uncertainty relation

�2Ŝ = �2Ŝ1 + �2Ŝ2 + �2Ŝ3 � 1
2 〈N̂〉, (2.3)
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where the variances are given by �2Ŝi = 〈Ŝ2
i 〉 − 〈Ŝi〉2. In other

words, the electric vector of a monochromatic quantum field
never traces a definite ellipse.

In classical optics, the states of definite polarization are
specified by 〈Ŝ〉2 = 〈Ŝ0〉2 and the average intensity is a
well-defined quantity. In the three-dimensional space of the
Stokes parameters this defines a sphere with radius equal to the
intensity: the Poincaré sphere. In contradistinction, in quantum
optics we have that Ŝ2 = Ŝ0(Ŝ0 + 1̂). As fluctuations in the
number of photons are, in general, unavoidable, we are forced
to work with a full three-dimensional Poincaré space that can
be regarded as a set of nested spheres with radii proportional
to the different photon numbers that contribute to the state.

The Hilbert space H of these fields is spanned by the Fock
states {|nH ,nV 〉} for both polarization modes. However, since
[N̂,Ŝ] = 0, each subspace with a fixed number of photons N

(i.e., fixed spin S ≡ S0 = N/2) must be handled separately. In
other words, in the previous onionlike picture of the Poincaré
space, each shell has to be addressed independently. This can
be underlined if we employ the relabeling

|S,m〉 ≡ |nH = S + m,nV = S − m〉. (2.4)

In this angular momentum basis, S = N/2, m = (nH − nV )/2,
and, for each S, m runs from −S to S. This can be seen as
the basis of common eigenstates of {Ŝ2,Ŝ3}, and these states
span a (2S + 1)-dimensional subspace wherein Ŝ acts in the
standard way.

III. THE POLARIZATION SECTOR AND
THE MULTIPOLE EXPANSION

From the previous discussion, it is clear that the moments
of any energy-preserving observable (such as Ŝ) do not depend
on the coherences between different subspaces. The only
accessible information from any state described by the density
matrix �̂ is thus its polarization sector [27], which is given by
the block-diagonal form

�̂pol =
⊕

S

PS �̂(S), (3.1)

where PS is the photon-number distribution (S takes on the
values 0, 1/2, 1, . . .) and PS �̂(S) is the reduced density matrix
in the subspace with spin S. Any �̂ and its associated block-
diagonal form �̂pol cannot be distinguished in polarization
measurements, and so, accordingly, we drop henceforth the
subscript pol. This is consistent with the fact that polarization
and intensity are, in principle, separate concepts: in classical
optics the form of the ellipse described by the electric field
(polarization) does not depend on its size (intensity).

To proceed further we need to represent every component
�̂(S) in a polarization basis. Instead of using directly the states
{|S,m〉}, it is more convenient to write such an expansion as

�̂(S) =
2S∑

K=0

K∑
q=−K

�
(S)
Kq T̂

(S)
Kq , (3.2)

TABLE I. Values of WK and the degree PK for three different
quantum polarization states. |S; θ,φ〉 stands for an SU(2) coherent
state in the S subspace, and |αH ,αV 〉 is a two-mode quadrature
coherent state with N̄ = |αH |2 + |αV |2 the average number of
photons.

State WK PK

|S,m〉 2K+1
2S+1 (CSm

Sm,K0)
2

[∑K
�=1

2�+1
2S+1 (CSm

Sm,�0)
2

∑K
�=1

2�+1
2S+1 (CSS

SS,�0)
2

]1/2

|S; θ,φ〉 2K+1
2S+1 (CSS

SS,K0)
2

1

|αH ,αV 〉 ∑∞
S=K/2

N̄2Se−N̄

(2S)!
2K+1
2S+1 (CSS

SS,K0)2
∑∞

S=K/2
N̄2Se−N̄

(2S)!

where the irreducible tensor operators T̂
(S)
Kq are [28]

T̂
(S)
Kq =

√
2K + 1

2S + 1

S∑
m,m′=−S

CSm′
Sm,Kq |S,m′〉〈S,m|, (3.3)

with CSm′
Sm,Kq being the Clebsch-Gordan coefficients that couple

a spin S and a spin K (0 � K � 2S) to a total spin S.
Although at first sight Eq. (3.3) might look a bit intricate,

T̂
(S)
Kq is related to the Kth power of the Stokes operators, a

simple observation that will turn out crucial in the following.
In particular, the monopole T̂

(S)
00 , being proportional to the

identity, is always trivial, while the dipole T̂
(S)

1q is proportional

to Ŝq and thus renders the classical picture, in which the
state is depicted by its average value. Therefore, higher-order
multipoles embody the polarization fluctuations we wish to
appraise [29].

The expansion coefficients �
(S)
Kq = Tr[�̂(S) T

(S) †
Kq ] are known

as state multipoles, and they contain complete information, but
sorted in a manifestly SU(2)-invariant form.

Alternatively, one can look at

W (S)
K =

K∑
q=−K

∣∣�(S)
Kq

∣∣2
, (3.4)

which is just the square of the state overlapping with the
Kth multipole patterns in the Sth subspace. When there is
a distribution of photon numbers, we sum over all of them:
WK = ∑

S PS W (S)
K . One can easily find out that∑

K

WK = Tr(�̂2), (3.5)

so it is just the purity. Actually, as shown in the Appendix, WK

can be interpreted as a measure of the localization of the state
in phase space.

In Table I we have worked out the values of WK for three
outstanding examples of quantum states that will serve as a
guide: the state |S,0〉 (which reads |N,N〉, with N = S, in
the basis |nH ,nV 〉), the SU(2) coherent state |S; θ,φ〉 (defined
in the Appendix), and a two-mode quadrature coherent state
|αH ,αV 〉, summing up over the Poissonian photon-number
distribution (with N̄ = |αH |2 + |αV |2). In Fig. 1 we also plot
these cases in point; as we can see, for the classical quadrature
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FIG. 1. (Color online) Distribution WK as a function of the multipole order K for the examples in Table I. From left to right, the state |S,0〉
(|N,N〉, with S = N , in the basis |nH ,nV 〉), the SU(2) coherent state |S; θ,φ〉, and a two-mode quadrature coherent state with average number
of photons N̄ = |αH |2 + |αV |2.

coherent state the first multipoles contribute the most, whereas
for the nonclassical |S,0〉 state the converse holds.

IV. RECONSTRUCTING THE MULTIPOLES

The analysis thus far confirms that multipoles constitute a
natural tool to deal with polarization properties. We will show
next that, in addition, they can be experimentally determined.

The polarization state is customarily analyzed with a Stokes
measurement setup (see Fig. 2), consisting of a quater-wave
plate (QWP) with the axis at angle φ, followed by a half-
wave plate (HWP) at angle θ and a polarizing beam splitter
(PBS) that separates the H and V modes. The wave plates
effectively perform a displacement of the state that can be
described by the operator D̂(θ,φ) = eiθŜ2eiφŜ3 , and (θ,φ) are
angular coordinates on the sphere. Each of the two outputs of
the PBS are measured by photon detectors: the photocurrent
sum gives directly the eigenvalue of N̂ , while the difference
gives the observable Ŝn = n · Ŝ, where n is the unit vector in
the direction (θ,φ) [30].

Altogether, this indicates that the scheme yields the proba-
bility distribution for Ŝn, from which we can equivalently infer
the moments

μ
(S)
� (θ,φ) = Tr

[
Ŝ�

n �̂(S)
]
. (4.1)

FIG. 2. (Color online) Experimental setup. Single photons A
and B, both horizontally polarized, are prepared by spontaneous
parametric down-conversion. (P)BS denotes a (polarization) beam
splitter. HWP and QWP denote half-wave and quarter-wave plates,
respectively. FS denotes a 50:50 fiber splitter, and D1–D4 denote
single-photon avalanche photodiodes.

For simplicity, we restrict ourselves to a subspace with a fixed
number of photons S, but everything can be smoothly extended
to the whole polarization sector.

We start by noticing that the measurable moments can be
expressed in terms of the state multipoles as

μ
(S)
� (θ,φ) = Tr

[
Ŝ�

3 D̂(θ,φ) �̂(S) D̂†(θ,φ)
]

= Tr

⎡
⎣Ŝ�

3

2S∑
K=0

K∑
q,q ′=−K

�
(S)
Kq DK

qq ′ (θ,φ) T̂
(S)
Kq

⎤
⎦ ,

(4.2)

where DS
mm′(θ,φ) = 〈S,m|D̂(θ,φ)|S,m′〉 is the Wigner D

function [28]. To proceed further we need to compute

Tr
[
Ŝ�

3 T̂
(S)
Kq

] = δq0

[
S(S + 1)(2S + 1)

3

]�/2 3�/2
√

2K + 1

(2S + 1)(�+1)/2

×
S∑

m=−S

(
CSm

Sm,10

)�
CSm

Sm,K0. (4.3)

Interestingly, we have that CSm
Sm,10 = m/

√
S(S + 1) and

S∑
m=−S

m�CSm
Sm,K0 = i�−K∂�

ωχS
K (ω)

∣∣
ω=0 ≡ f

(S)
K� K � �,

(4.4)

with χm
S (ω) the generalized SU(2) character [28]. Collecting

all those results together, the moments come out connected
with the multipoles in quite an elegant way:

μ
(S)
� (θ,φ) =

√
4π

2S + 1

�∑
K=0

K∑
q=−K

�
(S)
Kq f

(S)
K� YKq(θ,φ), (4.5)

YKq(θ,φ) being the spherical harmonics.
We can benefit from the orthonormality of YKq(θ,φ) to

integrate Eq. (4.5) so as to obtain

�
(S)
Kq = 1

f
(S)
K�

√
2S + 1

4π

∫
S 2

d�μ
(S)
� (θ,φ) Y ∗

Kq(θ,φ), (4.6)

where K � � and the integral extends over the whole unit
sphere S 2 with d� = sin θdθdφ being the solid angle. The
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reconstruction of the state requires the knowledge of all the
multipoles: this implies measuring all the moments in all the
directions, which proves to be very demanding [16].

Nonetheless, we can attack the problem in a much more
economic way. The central idea is that to determine the Kth
multipole it is enough to perform a Stokes measurement
in 2K + 1 independent directions. As a matter of fact, the
proposal proceeds in a recurrent way: first, we measure the
first-order moments in the three coordinate axis (or other
equivalent ones) and reconstruct �

(S)
1q . That is, from the values

of μ
(S)
1 (θ,φ), which can write down as

μ
(S)
1 (θ,φ) = f

(S)
11

√
4π

2S + 1

1∑
q=−1

�
(S)
1q Y1q(θ,φ), (4.7)

we need to know �
(S)
1q . By taking into account that f

(S)
11 =

(2S + 1)
√

S(S + 1)/3, we can solve the resulting linear
system, getting⎛

⎜⎝
�

(S)
11

�
(S)
10

�
(S)
1−1

⎞
⎟⎠

=
√

3

2S(S + 1)(2S + 1)

⎛
⎜⎝

−1 i 0

0 0
√

2

1 i 0

⎞
⎟⎠

⎛
⎜⎝

μ
(S)
1,1

μ
(S)
1,2

μ
(S)
1,3

⎞
⎟⎠ ,

(4.8)

from which we infer all the first-order properties. Here μ
(S)
1,k

indicate the first-order moment in the kth direction.
The measurement of the second moments gives us

μ
(S)
2 (θ,φ) = 1

2S + 1
f

(S)
02 + f

(S)
22

√
4π

2S + 1

2∑
q=−2

�
(S)
2q Y2q(θ,φ),

(4.9)

with

f
(S)
02 = 1

3S(S + 1)(2S + 1),
(4.10)

f
(S)
22 = 4(2S + 1)

5!

√
S(2S − 1)(S + 1)(2S + 3),

while f
(S)
12 = 0. We need to fix five optimal directions to invert

that system. For example, thinking of the measurements as
lines, we can choose the directions as

n1,2 ∝

⎛
⎜⎝

0

±2

1 + √
5

⎞
⎟⎠ , n3,4 ∝

⎛
⎜⎝

±2

1 + √
5

0

⎞
⎟⎠ ,

n5 ∝

⎛
⎜⎝ 1 + √

5

0

2

⎞
⎟⎠ , (4.11)

which maximizes the minimum angle between the lines and
thus in some sense spreads out the measurements over the
Poincaré sphere as much as possible [31]. The system can be
then solved, and all we need to characterize the process at
second order is known.

For the Lth moment, we have

μ
(S)
L =

√
4π

2S + 1
f

(S)
KLYK �

(S)
K , (4.12)

where μ
(S)
L = (μ(S)

L (θ1,φ1), . . . ,μ(S)
L (θ2L+1,φ2L+1)) and simi-

larly for �
(S)
K and [YL]ij = YLj (θi,φi). Observe that, in general,

the right-hand side hinges on the results of lowest-order
measurements. The linear inversion of that equation can be
formally written down as

�
(S)
K = 1

f
(S)
KL

√
2S + 1

4π

4π

2L + 1
P−1

L Y†
Lμ

(S)
L , (4.13)

where PL = 4π/(2L + 1)YLY†
L, with [PL]ij = PL(ωij ),

cos ωij= cos θi cos θj+ sin θi sin θj sin(φi − φj ), and PL(ωij )
is the Legendre polynomial. The choosing of the appropriate
directions is, in general, a tricky question if one wants to be
sure about the linear independence, but it has been thoroughly
studied [32]. In practice, methods such as maximum likelihood
are much more efficient in handling that inversion [33].

To check the proposed strategy, we have performed an
experiment using spontaneous parametric down-conversion.
The photon pairs centered at 780 nm were generated in a
2-mm-thick type-I β-barium-borate (BBO) crystal pumped by
a femtosecond laser pulse centered at 390 nm and subsequently
filtered by an interference filter with a 4-nm bandwidth and
brought to the inputs of a Hong-Ou-Mandel interferometer.
After the interferometer, either the state |1H ,1V 〉 or the
state |2H ,0V 〉 can be postselected, depending on the relative
polarizations of the incident photons.

The setup is sketched in Fig. 2. At each output of the PBS, a
two-photon detector is simulated by a 50:50 fiber beam splitter
(FS) and two single-photon detectors (PerkinElmer, SPCM-
AQRH). The photon detection efficiency of each single-photon
detector channel is used to calibrate the measurement of
the Stokes parameters. To achieve full information about
the first- and second-order moments, we have measured
these coincidences in five distinct measurement bases and
then reconstructed the multipoles via linear inversion. Each
measurement is done for 3 s and repeated three times to
improve the precision.

In Table II we summarize the results obtained for the state
|2H ,0V 〉 (which is |1,1〉 in the angular momentum basis).
The agreement with the theory is pretty good. Although this
instance might look a bit naive, it constitutes quite a conclusive
proof of principle of our method.

V. ASSESSING HIGHER-ORDER
POLARIZATION CORRELATIONS

Even though the polarization information is encoded in the
set {W (S)

K }, for most of the states only a limited number of
multipoles play a substantive role and the rest of them have an
exceedingly small contribution, so that gaining a good feeling
of the corresponding behavior may be tricky.

A possible way to bypass this disadvantage is to look at the
cumulative distribution

A (S)
K =

K∑
�=1

W (S)
� , (5.1)
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TABLE II. Experimental and theoretical results obtained for the state |2H ,0V 〉 (which is the |1,1〉 state in the angular momentum basis).
The number in parentheses indicates the error in the last figure. The directions of measurement are the three coordinate axes for μ1 and (4.11)
for μ2.

Experiment Theory Experiment Theory

Direction μ1 μ2 μ1 μ2 Multipole K = 1 K = 2 K = 1 K = 2

1 −0.10 (3) 0.84 (7) 0 0.8618 �K−2 −0.01 (7) −0.01 (1) i 0
2 0.06 (2) 0.87 (1) 0 0.8618 �K−1 −0.05 (2) + 0.03 (1)i 0.07 (6) −0.02 (2) i 0 0
3 0.99 (3) 0.50 (2) 1 0.5000 �K0 0.70 (1) 0.39 (4) 0.7071 0.4082
4 0.52 (1) 0.5000 �K1 0.05 (2) + 0.03 (1) i −0.07 (7) −0.02 (1) i 0 0
5 0.70 (2) 0.6382 �K2 −0.01 (1) +0.01 (1) i 0

which conveys the whole information up to order K . We
know from probability that it has remarkable properties [34].
Moreover, our previous reconstruction puts in clear evidence
that to obtain the Kth multipole one needs to determine all the
previous moments.

As with any cumulative distribution, A (S)
K is a monotone

nondecreasing function of the multipole order, with A (S)
2S

being proportional to the state purity [except by the monopole
contribution, K = 0, which is not included in Eq. (5.1)].
One might be interested in dealing instead with magnitudes
satisfying 0 � PK � 1 for every K , as any sensible degree of
polarization [35]. To that end, we note that for SU(2) coherent
states we have

A (S)
K,SU(2) = 2S

2S + 1
− [�(2S + 1)]2

�(2S − K)�(2S + K + 2)
. (5.2)

We conjecture that A (S)
K,SU(2) is indeed maximal for any K in

each subspace S. This seems to suggest a degree of polarization
up to the Kth order as

PK =
∑

S

PS

√√√√ A (S)
K

A (S)
K,SU(2)

. (5.3)

According to the definition Eq. (5.3), PK = 1 (for every K)
for SU(2) coherent states, which is compatible with the idea
that they are the most localized states over the sphere. On the
other hand, for quadrature coherent states, which constitute an
acid test for any new proposal in polarization, the result, as
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FIG. 3. (Color online) Degree of polarization PK as a function of
the multipole order K for the state |S,0〉 (left panel) and a quadrature
coherent state |αH ,αV 〉 with average number of photons N̄ = |αH |2 +
|αV |2 (right panel).

indicated in Table I, reads

PK =
∞∑

S=K/2

e−N̄ N̄2S

(2S)!

 1

2
erfc

(
K − N̄√

2N̄

)
. (5.4)

Here, N̄ is the average number of photons, and the second
equality, in terms of the complementary error function, holds
true for N̄ � 1. From the properties of this function, we can
estimate that the multipoles that contribute effectively are,
roughly speaking, from 1 to N̄ . In Fig. 3 we plot PK for the
states |S,0〉 and |αH ,αV 〉.

To round off our understanding of PK , in Fig. 4 we have
depicted PK for two other relevant quantum states routinely
treated in this context: NOON and two-mode squeezed vacuum
states, defined as

|NOON〉 = 1√
2

(|N,0〉 + |0,N〉),
(5.5)

|TMSV〉 =
√

1 − λ2
∑
N

λN |N,N〉.

To follow the standard notation, in both cases we have
employed the {|nH ,nV 〉} basis and λ = tanh r , with r the
squeezing parameter.

For the particular yet significant case of the dipole (K = 1),
Eq. (5.3) reduces to

P1 =
∞∑
S

PS

√
〈Ŝ1〉2 + 〈Ŝ2〉2 + 〈Ŝ3〉2

〈Ŝ0〉
, (5.6)

and the average values are calculated in every subspace S.
Interestingly, this definition has been recently proposed as a
way to circumvent the shortcomings of the standard degree of

PK
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FIG. 4. (Color online) Degree of polarization PK for the NOON
(left panel) and two-mode squeezed vacuum (right panel) using the
squeezing parameter r as a measure of the average number of photons.
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FIG. 5. (Color online) Second-order degree of polarization P2 for
the state |S,m〉.

polarization [36]; in our approach, it emerges quite in a natural
way.

To close our paper, we briefly consider the instance of
P2. For two-mode quadrature coherent states |αH ,αV 〉 we
immediately get

P2(|αH ,αV 〉) = 1 − (1 + N̄ ) exp(−N̄ ), (5.7)

which tends to the unity when the average number of photons
N̄ becomes large enough, in agreement with previous second-
order approaches [25]. For the states |S,m〉, we have

P2(|S,m〉) =
√

45m4 + 5S2(S + 1)2 − 9m2[2S(S + 1) + 1]

4S2(2S − 1)(4S + 1)
.

(5.8)

This expression is exactly unity whenever m = ±S or
±√

1 + 2S − 3S2/
√

5 (this equality is valid only when m is
an integer). This latter condition is only met when S = 1 with
m = 0.

On the other hand, P2 attains its minimum value

P2,min(|S,m〉) =
√

9 + 18S + 8S2

80S2

 1√

10
, (5.9)

whenever m = ±√
1 + 2S + 2S2/

√
10. In Fig. 5 we outline

these facts.

VI. CONCLUDING REMARKS

Multipolar expansions are a commonplace and a formidable
tool in many branches of physics. We have applied such
an expansion to the polarization density matrix, showing
how the corresponding state multipoles quantify higher-order
fluctuations in the Stokes variables. In this way we have pro-
vided a systematic characterization of quantum polarization
fluctuations that, paradoxically, was missing in the realm of
quantum optics.

Moreover, the formalism can be manifestly extended to
other systems in which SU(2) symmetry plays a crucial role
(such as in Bose-Einstein condensates and spin chains) and
to other unitary symmetries, such as SU(3) (which is pivotal
to understanding the polarization properties of the near field).
This is more than an academic curiosity, and work in this
direction is ongoing in our group.
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APPENDIX: POLARIZATION QUASIDISTRIBUTIONS

The discussion in this paper suggests that polarization
must be specified by a probability distribution of polarization
states. As a matter of fact, such a probabilistic description is
unavoidable in quantum optics from the very beginning, since
{Ŝk} do not commute and thus no state can have a definite
value of all of them simultaneously.

The SU(2) symmetry inherent in the polarization structure
of quantum fields allows us to take advantage of the pioneering
work of Stratonovich [37] and Berezin [38], who worked
out quasiprobability distributions on the sphere satisfying
all the pertinent requirements. This construction was later
generalized by others [39–43] and has proved to be very useful
in visualizing properties of spinlike systems [44–46].

For each partial �̂(S), one can define r-parametrized SU(2)
quasidistributions as

W (S)
r (θ,φ) =

√
4π√

2S + 1

2S∑
K=0

K∑
q=−K

(
CSS

SS,K0

)−r
�

(S)
Kq Y ∗

Kq(θ,φ).

(A1)

For r = 0 this is the Wigner function, while r = +1 and
−1 lead to the P and Q functions, respectively. Note also
that the Clebsch-Gordan coefficient CSS

SS,K0 has a very simple
analytical form [28]:

CSS
SS,K0 =

√
2S + 1(2S)!√

(2S − K)! (2S + 1 + K)!
. (A2)

While, for spins, S is typically a fixed number, in quantum
optics most of the states involve a full polarization sector and
one should sum over the subspaces contributing to the state.

The integral

� = 1∫
d�

[
W

(S)
r (θ,φ)

]2 , (A3)

extended to the whole sphere, can be interpreted as the effective
area where the corresponding quasidistribution is different
from zero. In other words, � is a measure of the number
of polarization states contained in a given field state. This
and similar definitions have already been used as measures of
localization and uncertainty in different contexts [47].

Using the explicit form of Eq. (A1) we immediately get

∫
d�

[
W (S)

r (θ,φ)
]2 = 4π

2S + 1

2S∑
K=0

(
CSS

SS,K0

)−2r
W (S)

K . (A4)
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We can appreciate a deep connection (except for the unessen-
tial Clebsch-Gordan coefficient) between the distribution
{W (S)

K } and the notion of localization in phase space. In
particular, for the Wigner function r = 0, the right-hand side
of Eq. (A4) is giving information about the measured {W (S)

K }.
For the sake of completeness, we briefly recall the definition

of the SU(2) coherent states (also known as spin or atomic
coherent states), which reads [48,49]

|S; θ,φ〉 = D̂(θ,φ)|S, − S〉. (A5)

Here D̂(θ,φ) = exp(ξ Ŝ+ − ξ ∗Ŝ−) [with ξ = (θ/2) exp(−iφ)
and (θ,φ) being spherical angular coordinates] plays the role
of a displacement on the Poincaré sphere of radius S.

The ladder operators Ŝ± = Ŝ1 ± iŜ2 select the fiducial
state |S,−S〉 as usual: Ŝ−|S,−S〉 = 0. This definition closely
mimics its standard counterpart for position and momentum.

Note that these coherent states are eigenstates of the
measured operator Ŝn = n · Ŝ,

Ŝn|S; θ,φ〉 = S|S; θ,φ〉, (A6)

and they saturate the uncertainty relation Eq. (2.3), so
they are the minimum uncertainty states in polarization
optics.

The two-mode quadrature coherent states |αH ,αV 〉 can be
expressed as a Poissonian superposition of SU(2) coherent
states:

|αH ,αV 〉 =
∑

S

N̄2Se−N̄

(2S)!
|2S,θ,φ〉, (A7)

where N̄ = |αH |2 + |αV |2 is the average number of
photons.
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