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Abstract: When two entangled qubits, each owned by Alice and Bob,
undergo separate decoherence, the amount of entanglement is reduced, and
often, weak decoherence causes complete loss of entanglement, known as
entanglement sudden death. Here we show that it is possible to apply quan-
tum measurement reversal on a single-qubit to avoid entanglement sudden
death, rather than on both qubits. Our scheme has important applications in
quantum information processing protocols based on distributed or stored
entangled qubits as they are subject to decoherence.
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1. Introduction

Quantum entanglement is an essential resource for quantum information processing including
quantum computation [1, 2] and quantum communication [3–5]. However, decoherence due
to irreversible interactions with the environment causes degradation of entanglement, and, in
some cases, leads to entanglement sudden death (ESD) in which entanglement is completely
lost before its subsystem is fully decohered [6, 7]. Since overcoming decoherence is required
for practical realization of quantum information protocols, various schemes for suppressing
decoherence have been reported [8–15].

Recently, it has been shown that quantum measurement reversal, a set of weak and revers-
ing measurements [16–20], can effectively suppress decoherence [21–24]. Without quantum
measurement reversal, decoherence causes the qubit to end-up in a mixed state due to the loss of
quantum coherence, while if quantum measurement reversal is introduced as shown in Fig. 1(a),
the initial state may be preserved even in the presence of decoherence [21,22]. This decoherence
suppression scheme can also be applied to multi-qubit systems, in particular, it has been shown
that entanglement of two-qubit states that undergo separate decoherence can be protected by
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Fig. 1. (a) Decoherence suppression scheme using quantum measurement reversal for a
single qubit state. To suppress decoherence, a set of weak and reversing measurements are
performed before and after decoherence, respectively. Note that the size of the spheres cor-
responds to the population fraction of each level,|0〉 and|1〉. (b) Entanglement of two-qubit
states which undergo separate decoherence can be recovered if both Alice and Bob carry out
quantum measurement reversal. (c) The situation we considered here: Only Alice performs
single-qubit quantum measurement reversal on her subsystem.W : weak measurement,D:
decoherence,R: reversing measurement, Sys: system, Env: environment.

using two sets of single-qubit quantum measurement reversal steps, see Fig. 1(b) [24]. In some
cases, decoherence affecting on both subsystems of two-qubit entangled states causes complete
loss of entanglement, i.e., ESD [6]. Interestingly, even in this severe circumstance, the initial
entanglement can be protected by performing quantum measurement reversal on both qubits.
Avoiding ESD is essential in entanglement distribution between two distant parties, since once
distributed entangled qubits completely lose entanglement, entanglement cannot be distilled
between them [25–28].

A question then naturally arises whether preventing an entangled state from completely los-
ing entanglement against ESD is possible by quantum measurement reversal performed only on
one of the qubits rather than on both qubits as shown in Fig. 1(c). For instance, between Alice
and Bob who initially share two entangled qubits, only Alice performs quantum measurement
reversal on her qubit. In this work, we demonstrate that Alice alone can avoid ESD by perform-
ing quantum measurement reversal only on her qubit.

2. Theory

Consider the situation in which a two-qubit entangled state is affected by separate decoherence.
Initially, Alice and Bob share two-qubit pure entangled state|Φ〉=α |00〉+β |11〉 where|α|2+
|β |2 = 1 as shown in Fig. 2(a). We assume that each qubit independently suffers from amplitude
damping decoherence. In general, amplitude damping decoherence arises due to the interaction
between the system (S) and the environment (E) and amplitude damping for a single qubit can
be represented by the following operation,|0〉S|0〉E → |0〉S|0〉E and|1〉S|0〉E →

√
D̄|1〉S|0〉E +
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Fig. 2. (a) Alice and Bob initially share a pure entangled state|Φ〉. When both subsystems
suffer from decoherence, the final stateρD loses its entanglement partially or completely.
(b) To suppress decoherence, Alice performs a set of weak measurementWA (p) and revers-
ing measurementRA (pr) before and after her subsystem undergoes decoherence, respec-
tively. Then, the resulting stateρA becomes closer to the initial state|Φ〉, i.e. ρA is more
entangled thanρD. Note that Bob is not involved in this decoherence suppression scheme.

√
D|0〉S|1〉E , where 0≤ D ≤ 1 is the magnitude of the decoherence andD̄ ≡ 1−D. Amplitude

damping usually describes the energy dissipation process, for instance, it can be observed from
the state of an atom which spontaneously decays, the state of a photon in an leaky cavity or an
interferometer, and the zero-temperature energy relaxation of a superconducting qubit [19,29].

Although Alice and Bob initially share a pure entangled state|Φ〉, the resulting stateρD is
not a pure state since each particle suffers from amplitude damping decoherence with strengths
of DA andDB, respectively [7,24]. The concurrence [30] of the final stateρD, CD is given by

CD = max
{

0,ΛD ≡ 2
√

D̄AD̄B |β |
(

|α|−
√

DADB |β |
)

}

, (1)

whereCD = ΛD if ΛD > 0 andCD is always less than the concurrence of the initial state,
2|αβ |. From Eq. (1), it is clear that for|α| ≥ |β |, CD = 0 only whenDA = 1 or DB = 1,
meaning that the entanglement exists except the case that the final stateρD is fully damped by
decoherence (Di = 1). On the other hand, for|α| < |β |, entanglement completely disappears
when

√
DADB > |α/β |, which is clearly less than the maximum level of the decoherence. Thus,

ESD occurs only if|α|< |β | [7].
Let us now describe our strategy to avoid ESD as shown in Fig. 2(b). At first, Alice and Bob

initially share a pure entangled state|Φ〉. Then, Alice performs a weak measurementWA(p)
on her qubit before her qubit undergoes decoherence, see Fig. 2(b). Here, weak measurement
partially collapses a single qubit state towards|0〉S. The weak measurement operatorW (p) can
be written asW (p) = |0〉〈0|+√

1− p |1〉〈1| where p is the strength of the weak measure-
ment [20]. Since only|1〉S state undergoes decoherence, the system states can partially avoid
decoherence by reducing the portion of|1〉S state with weak measurements. Note that the initial
state|Φ〉 is transformed into|Φ′〉 by a weak measurement and|Φ′〉 is still a pure state.

Then each qubit undergoes separate decoherence and|Φ′〉 evolves to a mixed stateρ ′.
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Alice now performs a reversing measurementRA (pr) on her qubit as shown in Fig. 2(b).
A reversing measurement is also a weak measurement but it partially collapses the state
towards the opposite direction, i.e.,|1〉S. The reversing measurement operator is given as
R(pr) =

√
1− pr |0〉〈0|+ |1〉〈1| wherepr is the strength of the reversing measurement. The

reversing strength we used ispr = p+DA p̄ where ¯p ≡ 1− p [21]. Here, Bob does not play
any role in the whole procedure. Note that the scheme also works well if only Bob carries out
single-qubit quantum measurement reversal on his qubit, i.e.,WB (p) andRB (pr). Note that the
strength of the reversing measurement which Bob performs on his qubit ispr = p+DB p̄.

After Alice alone performs the single-qubit quantum measurement reversal on her qubit, the
concurrence of the two-qubit stateρA, CA, can be evaluated by

CA = max

{

0,ΛA =
2
√

D̄B |β |
(

|α|−√
DADB p̄ |β |

)

1+DA p̄|β |2

}

, (2)

whereCA = ΛA if ΛA > 0, otherwiseCA = 0. Note thatCA > CD, meaning thatρA is more
entangled thanρD. For the case with Bob’s single-qubit quantum measurement reversal,CB is
the same asCA except the fact thatDA andDB are interchanged, andCA andCB give the same
value whenDA = DB = D.

From Eq. (2), we can find several remarkable results. First of all,ΛA is monotonic increasing
function of p, meaning that the resulting stateρA becomes more entangled as the weak and
reversing strengths increase. Note that the concurrence of the initial state|Φ〉, 2|αβ |, cannot
be fully retrieved since only Alice performs single-qubit quantum measurement reversal on
her qubit. However, even in the ESD condition,ρA can have non-zero entanglement if the
strengths of the weak and its corresponding reversing measurements (pr = p+DA p̄) are larger
than the threshold value, i.e.,p ≥ 1− |α/β |2/(DADB). Hence, we can conclude that Alice
can avoid ESD by performing single-qubit quantum measurement reversal only on her qubit
without Bob’s help. Once Alice and Bob share non-zero entanglement against decoherence,
they can prepare a maximally entangled state from multiple copies of less entangled states
using entanglement distillation protocols [25–28].

3. Experiment

The experimental setup for demonstrating that Alice or Bob alone can avoid ESD and prevent
complete loss of entanglement against decoherence using single-qubit quantum measurement
reversal is shown in Fig. 3. Two-qubit entangled states are prepared by two-photon polariza-
tion states which are generated via spontaneous parametric down conversion process. A 6 mm
type-I β -BaB2O4 crystal is pumped by a 405 nm diode laser beam (100 mW) and a pair of
down-converted photons centered at 810 nm are generated on the frequency-degenerate, non-
collinear phase matching condition. Each down-converted photon is frequency-filtered using
an interference filter with full width at half-maximum bandwidth of 5 nm. Then, the two-qubit
entangled state|Φ〉 = α |00〉+β |11〉 can be prepared using quantum interferometry [31] and
glass-plates oriented at Brewster angle (BPs) [20]. Here,|0〉 and|1〉 correspond to the horizon-
tally (|H〉) and vertically (|V 〉) polarized photons, respectively.

The weak measurement on the polarization qubit can be implemented using BPs since BP
transmits horizontally polarized photons without any reflection while reflecting vertically po-
larized photons with some probability [20]. The reversing measurement partially collapses the
state to the opposite direction, so it can be realized by adding 45◦ half-wave plates (HWPs) for
bit-flip operations before and after BPs. The strengths of weak and reversing measurementp
andpr can be increased by adding more BPs. The amplitude damping decoherence for the pho-
tonic system can be realized using a displaced Sagnac interferometer [7,22,24]. In experiment,
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Fig. 3. Experimental setup. A set of BPs and HWPs at the state preparation part is exploited
for preparing the non-maximal entangled states. Weak and reversing measurements are also
implemented by BPs and 45◦ HWPs. The amplitude damping channel for single qubit po-
larization state is realized using displaced Sagnac-type interferometer and additional beam
splitters [7,22,24]. IF: interference filter, HWP: half-wave plate, QWP: quarter-wave plate,
BP: Brewster-angle glass plate, PBS: polarizing beam splitter, BS: beam splitter, QST:
quantum state tomography.

the system qubit is encoded in the polarization of the single photon (|H〉 = |0〉S, |V 〉 = |1〉S)
and the environment qubit is encoded in the path of the single photon,|0〉E and|1〉E , see Fig. 3.
Finally, the resulting states are analyzed by quantum state tomography.

4. Results and analysis

Before confirming whether our scheme works well, we have investigated how the initial en-
tangled state|Φ〉 = α |00〉+ β |11〉 is affected by the identical decoherence (DA = DB = D).
We evaluated the concurrence of the final stateρD from the density matrices which are exper-
imentally reconstructed by the quantum state tomography. For the two entangled input states
with |α| = |β | and|α| = 0.481< |β |, we measuredCD (ΛD) as increasing the strength of the
decoherenceD and the results are shown in Fig. 4(a). As expected,CD decreases asD increases
in both cases. Note that ESD is observed for the case of|α|= 0.481.

Then, consider the case that only Alice or Bob alone carries out single-qubit quantum
measurement reversal to avoid complete loss of entanglement when each qubit undergoes
separate decoherence. We performed the experiment for the identical damping case, i.e.,
DA = DB = D. In addition, to simulate the situation in which ESD can take place, we chose
D = 0.617± 0.017. Figure 4(b) shows the experimental results forCA andCB (ΛA andΛB)
as a function ofp for two initial entangled states. We have collected experimental data up to
p = 0.617 due to low success probabilities associated with weak and reversing measurements
for largerp. As expected from Eq. (2),CA andCB become larger asp increases. In addition, for
the input state with|α|= 0.481 which experiences ESD without introducing quantum measure-
ment reversal,CA andCB can have non-zero values when strengths of the weak and reversing
measurements are larger than the threshold value. This result demonstrates that Alice and Bob
can share non-zero entanglement even in the ESD condition using only single-qubit quantum
measurement reversal, i.e., ESD can be avoided by Alice or Bob alone.
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Fig. 4. (a) ConcurrenceCD of the resulting stateρD decreases as the strength of the deco-
herence (D) increases. (b) ConcurrenceCA (CB) of the final stateρA (ρB) in the case that
only Alice (Bob) perfroms single-qubit quantum measurement reversal on her (his) qubit
(DA = DB = 0.617). p is the strength of the weak measurement. Solid lines are theoretical
results. Negative values corresponds toΛD for (a), andΛA and ΛB for (b), respectively.
Note thatC = 0 whenΛ < 0 sinceC = max{0,Λ}. We evaluated the fidelity between the
ideally expected state and the experimentally reconstructed state forρA and ρB. The fi-
delity values forρA (FA) andρB (FB) are averaged from the experimental data of (b), and
we obtainFA = 0.945±0.024 andFB = 0.935±0.028.

5. Conclusion

When two entangled qubits, each owned by Alice and Bob, experience separate decoherence,
the amount of entanglement decreases and sometimes ESD occurs. We have demonstrated that
Alice or Bob alone overcomes ESD and still share non-zero entanglement after decoherence
with quantum measurement reversal on only one of the two entangled qubits. Since any small
amount of entanglement shared by Alice and Bob can be concentrated, we believe that our
scheme has important applications in quantum information protocols based on distributed or
stored entangled qubits as they are subject to decoherence. Moreover, our scheme can be di-
rectly applied to other qubit systems experiencing decoherence, such as, two-level atoms with
spontaneous decay, superconducting qubits with zero-temperature energy relaxation, and so on.
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Appendix : Reversing measurement strength under decoherence

When an initial quantum state|ψin〉 = α |0〉+β |1〉 does not suffer any decoherence (D = 0),
the reversing measurement for the weak measurementW (p) = |0〉〈0|+√

1− p |1〉〈1| is
R(pr) =

√
1− pr |0〉〈0|+ |1〉〈1| with pr = p [17]. The quantum state|ψin〉=α |0〉+β |1〉 is re-

trieved without errors only whenpr = p, and, thus,pr = p is the optimal reversing measurement
strength forD = 0. Note that the optimalpr is independent onα in this case.

However, when decoherence is introduced,pr = p is not the optimal measurement anymore
and the “optimality” of the reversing measurement strength becomes highly non-trivial. In gen-
eral,pr is dependent on several parameters such asD, p, andα. Since the initial state cannot be
retrieved perfectly, the optimalpr value is different for maximizing, e.g., the state fidelity, the
success probability, the concurrence, etc. Moreover, the optimalpr value is also dependent on
the condition of the decoherence suppression scenarios. In this section, we investigate several
reversing measurement strategies and compare them with respect to the state fidelity and the
success probability. Here, we consider three different situations i) a single qubit state suffers
decoherence [21,22], ii) both subsystems of the two-qubit entangled state suffer from decoher-
ence (the scenarios considered in [24] and in this manuscript), and iii) one subsystem of the
two-qubit entangled state suffers from decoherence.

A1. Single qubit case

As shown in Fig. 1(a), if a set of weak measurementW (p) and reversing measurementR(pr)
measurements are performed before and after decoherence (D), an initial qubit state|ψin〉 =
α |0〉+β |1〉, where|α|2+ |β |2 = 1, is transformed to the final stateρout, given as

ρout=
1
PS

(

p̄r

(

|α|2+Dp̄|β |2
)

√

p̄rD̄p̄αβ ∗
√

p̄rD̄p̄α∗β D̄p̄|β |2

)

, (3)

whereD̄ ≡ 1−D, p̄ ≡ 1− p, p̄r ≡ 1− pr. The success probability or channel transmittance is

PS = p̄r

(

|α|2+Dp̄|β |2
)

+ D̄p̄|β |2 [21,22].

One way to quantify performance of the decoherence suppression scheme is evaluating
the state fidelity between the initial stateρin = |ψin〉〈ψin| and the final stateρout, i.e., F =
〈ψin|ρout|ψin〉, which is calculated to be

F =
1− p|β |4− pr|α|4−Dp̄|β |2

[

1+(pr −2) |α|2
]

−2|α|2|β |2
[

1−
√

p̄rD̄p̄
]

1−Dpr − D̄pr|α|2− p(1−Dpr) |β |2
. (4)

Then, the reversing measurement strengthpmax
r value which gives the maximum fidelity value

Fmax is

pmax
r =− 1−p|β |2

Dp̄|β |2+|α |2 +
(Dp̄+p)(|α |2−|β |2)2

+4|α |2−1+D̄p̄(|α |2−|β |2)

√

Dp̄|β |2(|α|2−|β |2)
2
+|α|2

Dp̄|β |2+|α|2

2|α |4 . (5)

Note thatpmax
r depends onα, D, andp.

However, in practical decoherence scenario, we may assume that we know the magnitude of
decoherenceD while we do not have any prior information about the initial state|ψin〉, i.e.,α
is an unknown parameter [22,24]. We consider two different state independentpr values. First,
we obtainpr by substituting|α|= 1/

√
2 into Eq. (5),

pfix
r =

2D+ p−2Dp
D+1−Dp

, (6)
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wherepfix
r is now state-independent, meaning thatpfix

r is not a functionα.
Second, we choosepr to be pexp

r = p+(1− p)D which is used in our paper [21, 22]. The
reasons we chosepexp

r are the following: i)pexp
r is state independent, i.e.,pexp

r is not a function of
α and ii) the state fidelityF asymptotically approaches to 1 as the weak measurement strength
p → 1 regardless ofα.

We now compare the state fidelity valuesF between the initial and final states for two dif-
ferent reversing measurement strengthpfix

r andpexp
r . The state fidelity values for the strength of

the reversing measurementpfix
r andpexp

r , respectively, are calculated to be

Ffix =
1+ |β |2 Dp̄−2|αβ |2

(

1−√
1+Dp̄

)

1+2Dp̄|β |2
, (7)

and

Fexp=
1+Dp̄ |αβ |2

1+Dp̄ |β |2
. (8)

Fmax can be obtained by substitutingpmax
r to Eq. (3). Note thatFmax is always higher than both

of Ffix andFexp regardless of|α|, D, andp. However, to achieveFmax, we need to know prior
information about the initial state, meaning that the decoherence suppression scheme becomes
state dependent. Thus, here, we focus on comparingFexp with Ffix .

The numerical results for the state fidelities for reversing strengthspfix
r and pexp

r when
D = 0.617 are shown in Fig. 5(a). Note thatFexp > Ffix when |α| is larger than|β |. Since
our decoherence suppression scheme exploits weak measurement, the success probability of
the scheme is not unity. Hence, the success probability is also an important parameter for quan-
tifying the performance of the scheme. The success probabilities forpfix

r andpexp
r , respectively,

(a) (b)

0.6

1.0

0.5

0

0.5

1.0

0.8

1.0

0.5

0

0.5

1.0

0.2

0

1.0
0

0.4

0

0.6

Fig. 5. Result of the scenario in Fig. 1(a) withD = 0.617. (a) State fidelitiesFfix andFexp

as functions of|α| and p. Ffix and Fexp increase as the weak measurement strengthp
increases. (b) Success probabilitiesPfix

S andPexp
S as functions of|α| and p. Pexp

S is always
larger thanPfix

S regardless of|α| and p values. Note thatF → 1 andPS → 0 asp → 1 for
both cases ofpfix

r andpexp
r .
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are given by

Pfix
S =

D̄p̄
(

1+2Dp̄ |β |2
)

1+Dp̄
and Pexp

S = D̄p̄
(

1+Dp̄ |β |2
)

. (9)

Pmax
S can be obtained by substitutingpmax

r into PS of Eq. (3). Note that, in most cases,Pmax
S is

lower thanPfix
S andPexp

S sincepmax
r is chosen for maximizing the state fidelityF.

Figure 5(b) represents the success probability dependencies on|α| andp for different revers-
ing measurement strengths whenD = 0.617. As shown in Fig. 5(b),Pexp

S > Pfix
S for all values

of |α| andp. In the single qubit case, the reversing measurement strengthpexp
r = p+(1− p)D

is more efficient thanpmax
r andpfix

r in terms of the success probability.

A2. Two-qubit case: Both subsystems suffer from decoherence and two pairs of weak and re-
versing measurements are performed

We consider the situation shown in Fig. 1(b) in which the initial two-qubit entangled state
|Φ〉 = α |00〉+β |11〉, where|α|2+ |β |2 = 1, suffers from separate decoherence and two pairs
of weak and reversing measurements are applied to suppress decoherence [24]. To simplify
the situation, we assume that each subsystem undergoes the same magnitude of decoherence
(DA = DB = D) and the strengths of weak measurementsWA(p) andWB(p), and reversing
measurementsRA(pr) andRB(pr) performed on each subsystem are the same. Then, the output
stateρout is given as

ρout=
1
PS











(

|α|2+D2 |β |2 p̄2
)

p2
r 0 0 p̄D̄prαβ ∗

0 D |β |2 D̄p̄2pr 0 0
0 0 D |β |2 D̄p̄2pr 0

p̄D̄prα∗β 0 0 |β |2 D̄2p̄2











, (10)

wherePS = prD̄ |α|2 (Dpr + pr −2)+(Dpr −1)2
(

1− p2 |β |2+2p |β |2
)

is the success proba-

bility. The state fidelity between the initial state and the output state is obtained to be

F =
|β |2 D2 p̄2

[

|α|2 (pr −2) pr +1
]

−2|β |2 Dp̄
[

p̄+ |α|2 (p− pr)
]

+
[

p̄+ |α|2 (p− pr)
]2

|α|2 D̄pr [(D+1)pr −2]+
[

|β |2 (p−2)p+1
]

(Dpr −1)2
, (11)

and the reversing measurement strength maximizingF is

pmax
r =

D̄p̄+2p |α|2

2|α|2 (1−Dp̄)
−

D̄p̄

√

|α |2−Dp̄|β |2(4|α |2−Dp̄)
|α |2+D2 p̄2|β |2

2|α|2 (1−Dp̄)
, (12)

if i) |α| ≥ 1√
2

or ii) |α| < 1√
2

and Dp̄ |β |2 < |α|2 < p̄ |β |2. Otherwise,pr = 1 maximizesF ,
meaning that the reversing measurementpr should be projection measurement regardless of the
weak measurement strengthp.

As we did in the single qubit case,pfix
r is obtained by substitutingα = 1/

√
2 into Eq. (12)

and we obtain

pfix
r =

√

D2p̄2+1− D̄p̄
√

D2 p̄2+1
, (13)
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Fig. 6. Result of the scenario in Fig. 1(b) withDA = DB = 0.617. (a) State fidelitiesFfix

andFexp as functions of|α| and p. The state fidelities increase as the weak measurement
strengthp increases. (b) Success probabilitiesPfix

S andPexp
S as functions of|α| andp. Note

thatPS → 0 asp → 1 for all both cases.

and the corresponding state fidelityFfix for pfix
r is given as

Ffix =
2|α|2 |β |2

(

√

D2 p̄2+1−1
)

+D2p̄2 |β |2+1

2Dp̄ |β |2
(

√

D2 p̄2+1+Dp̄
)

+1
. (14)

On the other hand, the state fidelityFexp for pexp
r = p+(1− p)D is calculated to be

Fexp=
1+D2p̄2 |α|2 |β |2

1+Dp̄ |β |2 (Dp̄+2)
. (15)

The numerical results for the state fidelitiesF for pfix
r and pexp

r are shown in Fig. 6(a). As
shown in Fig. 6(a), the general tendency ofFfix andFexp are similar to the results of the single
qubit case, see Fig. 5(a).Fexp is generally larger thanFfix when|α| is larger than|β |.

Finally, the success probabilities forpfix
r andpexp

r , respectively, are calculated to be

Pfix
S = D̄2 p̄2

(

D2 p̄2 |β |2+ |α|2
D2 p̄2+1

+
2Dp̄ |β |2
√

D2p̄2+1
+ |β |2

)

, (16)

and

Pexp
S = D̄2 p̄2

[

1+Dp̄ |β |2 (Dp̄+2)
]

. (17)

Figure 6(b) shows the success probabilitiesPS for various reversing measurement strength
pr. As shown in Fig. 6(b),Pexp

S is always larger thanPfix
S in any combination of|α| andp. The

general tendency of the success probabilities are similar to the single qubit case in thatPexp
S is

larger thanPfix
S .

A3. Two-qubit case: Both subsystems suffer from decoherence and one pair of weak and revers-
ing measurements are performed

In this section, we consider the scenario of this paper, see Fig. 1(c). Each subsystem of the initial
entangled state|Φ〉 = α |00〉+β |11〉, where|α|2+ |β |2 = 1, undergoes separate decoherence
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and a set of weak measurementWA(p) and reversing measurementRA(pr) is performed only
on the subsystem undergoing decoherence (A). If we assume each subsystem undergoes the
identical decoherence (DA = DB = D), the output stateρout is given as

ρout =
1
PS











p̄r

(

D2 p̄ |β |2+ |α|2
)

0 0 αβ ∗D̄
√

p̄
√

p̄r

0 DD̄p̄ |β |2 p̄r 0 0
0 0 DD̄p̄ |β |2 0

α∗β D̄
√

p̄
√

p̄r 0 0 D̄2 p̄ |β |2











, (18)

wherePS = |α|2 [p− pr (D̄+Dp)] + p̄(1−Dpr) and the corresponding state fidelity between
the initial state and the final state is calculated to be

F =
D2 p̄|β |2(1−|α |2pr)−2|α |2(√ p̄p̄r−1)(D|β |2−1)−|α |4(2√ p̄ p̄r+pr−2)−2D|β |2+(2D−1)p|β |4+1

(p|β |2−1)(Dpr−1)−D̄|α |2pr
. (19)

Since the reversing measurement strengthpmax
r which maximizesF is rather complicated and

cannot be simplified, we providepfix
r instead ofpmax

r . pfix
r is calculated to be

pfix
r =

(2Dp̄+ p)

[

2−Dp̄

(

D(2Dp̄+ p)+

√

D
[

D
(

(2Dp̄+ p)2−4p̄
)

−4p
]

+4−2

)]

2(Dp̄+1)2
. (20)

Since the final expressions ofFfix andPfix
S are also complicated, we omit their analytic ex-

pressions.Fexp andPexp
S values forpexp

r , respectively, are given as

Fexp=
D2 p̄ |α|2 |β |2+2

(√
D̄−1

)

|α|2 |β |2−D |β |4+1

Dp̄ |β |2+1
, (21)

and

Pexp
S = D̄p̄

(

Dp̄ |β |2+1
)

. (22)
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Fig. 7. Result of the scenario in Fig. 1(c) withDA = DB = 0.617. (a) State fidelitiesFfix

andFexp as functions of|α| and p. The state fidelities increase as the weak measurement
strengthp increases. (b) Success probabilitiesPfix

S andPexp
S as functions of|α| and p. Pfix

S
is always larger thanPexp

S regardless of|α| andp values. Note thatF does not approach to
unity andPS → 0 asp → 1 for both cases ofpfix

r andpexp
r .
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Although we do not provide explicit forms ofFfix andPfix
S due to their complexity, we show

numerical results to compareFfix andPfix
S with Fexp andPexp

S , respectively. Figure 7(a) shows
the state fidelity results for various reversing strengths. Since a single pair of weak and revers-
ing measurements cannot suppress two independent decoherence, the state fidelitiesF cannot
achieve unity even in the case thatp → 1. Note thatF → 1 asp → 1 in both of Fig. 5(a) and
Fig. 6(b). Another thing to note is thatFfix is larger thanFexp when |α| is larger than|β | in
Fig. 7(a) whileFexp is larger thanFfix when |α| is larger than|β | in both of Fig. 5(a) and
Fig. 6(a). Interestingly, the difference betweenFfix , andFexp is very small in any combination
of |α| andp in Fig. 7(a).

The general tendency of the success probabilities in this case are opposite to the previous
cases, see Fig. 7(b).Pfix

S is always larger thanPexp
S in Fig. 7(b); however,Pexp

S is always larger
thanPfix

S in both of Fig. 5(b) and Fig. 6(b).

A4. Two-qubit case: One subsystem suffers from decoherence and one pair of weak and revers-
ing measurements are performed

Finally, we consider the case of Fig. 1(c) withDA = D andDB = 0. Here only the subsystem A
of the initial entangled state|Φ〉=α |00〉+β |11〉, where|α|2+ |β |2 = 1, suffers from decoher-
ence and a set of weak measurementWA(p) and reversing measurementRA(pr) is performed
on the subsystem A. Then, the output stateρout becomes

ρout =
1
PS









|α|2 p̄r 0 0
√

D̄
√

p̄
√

p̄rαβ ∗

0 D |β |2 p̄ p̄r 0 0
0 0 0 0√

D̄
√

p̄
√

p̄rα∗β 0 0 |β |2 D̄p̄









, (23)

wherePS = |β |2 D̄p̄+ |β |2 Dp̄p̄r + |α|2 p̄r and the state fidelity between the input state and the
output state is given as

F =
Dp̄ |β |4+ |α|4

(

2
√

D̄p̄p̄r + pr −2
)

−2|α|2
(

√

D̄p̄p̄r −1
)

+ p |β |4−1

D̄ |α|2 pr +
(

p |β |2−1
)

(1−Dpr)
, (24)

and the reversing measurement strengthpmax that maximizesF is

pmax
r =

D2 p̄2 |β |4−Dp̄ |α|2
(

|β |2+1
)

+ p |α|4
(

|α|2−Dp̄ |β |2
)2 . (25)

Then,pfix
r is evaluated by substitutingα = 1/

√
2 into Eq. (25) andpfix

r is given as

pfix
r =

D2 p̄2−3Dp̄+ p

(Dp̄−1)2
. (26)

The state fidelity values forpfix
r andpexp

r , respectively, are given as

Ffix =

(

Dp̄ |β |2+1
)2

Dp̄ |β |2 (Dp̄+3)+1
, and Fexp=

1

Dp̄ |β |2+1
. (27)

The success probabilities forpfix
r andpexp

r , respectively, are given as

Pfix
S =

D̄p̄
[

Dp̄ |β |2 (Dp̄+3)+1
]

(Dp̄+1)2
, and Pexp

S = D̄p̄
(

Dp̄ |β |2+1
)

. (28)
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Fig. 8. Result of the scenario in Fig. 1(c) withDA = 0.617 andDB = 0. (a) State fidelities
Ffix andFexp as functions of|α| andp. (b) Success probabilitiesPfix

S andPexp
S as functions

of |α| andp. Pexp
S is always larger thanPfix

S regardless of|α| andp values. Note thatF → 1
andPS → 0 asp → 1 for both cases ofpfix

r andpexp
r .

The numerical results for the state fidelities and the success probabilities for various reversing
measurement strengths are shown in Fig. 8. In this scheme, the general tendencies of the state
fidelities and the success probabilities are similar to the single qubit case shown in Fig. 5, i.e.,
Fexp> Ffix when|α| is larger than|β | andPexp

S > Pfix
S regardless of|α| andp.

A5. Conclusion

In conclusion, we have investigated the state fidelitiesF and the success probabilitiesPS for var-
ious decoherence suppression schemes. Our results suggest that there is no reversing measure-
ment which maximizes the state fidelity and the success probability simultaneously. In many
cases, a trade-off relation betweenF andPS holds, in other words, the higher the state fidelity,
the lower the success probability, vice versa. Therefore, one should choose a properpr value
for a specific application, after carefully considering the trade-off relation.
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