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Abstract:  When two entangled qubits, each owned by Alice and Bob,
undergo separate decoherence, the amount of entanglement is reduced, and
often, weak decoherence causes complete loss of entanglement, known as
entanglement sudden death. Here we show that it is possible to apply quan-
tum measurement reversal on a single-qubit to avoid entanglement sudden
death, rather than on both qubits. Our scheme has important applications in
guantum information processing protocols based on distributed or stored
entangled qubits as they are subject to decoherence.
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1. Introduction

Quantum entanglement is an essential resource for quantum information processing including
guantum computation [1, 2] and quantum communication [3-5]. However, decoherence due
to irreversible interactions with the environment causes degradation of entanglement, and, in
some cases, leads to entanglement sudden death (ESD) in which entanglement is completely
lost before its subsystem is fully decohered [6, 7]. Since overcoming decoherence is required
for practical realization of quantum information protocols, various schemes for suppressing
decoherence have been reported [8—15].

Recently, it has been shown that quantum measurement reversal, a set of weak and revers-
ing measurements [16-20], can effectively suppress decoherence [21-24]. Without quantum
measurement reversal, decoherence causes the qubit to end-up in a mixed state due to the loss of
guantum coherence, while if quantum measurement reversal is introduced as shown in Fig. 1(a),
the initial state may be preserved even in the presence of decoherence [21,22]. This decoherence
suppression scheme can also be applied to multi-qubit systems, in particular, it has been shown
that entanglement of two-qubit states that undergo separate decoherence can be protected by
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Fig. 1. (a) Decoherence suppression scheme using quantum measurement reversal for a
single qubit state. To suppress decoherence, a set of weak and reversing measurements are
performed before and after decoherence, respectively. Note that the size of the spheres cor-
responds to the population fraction of each lej@land|1). (b) Entanglement of two-qubit

states which undergo separate decoherence can be recovered if both Alice and Bob carry out
guantum measurement reversal. (c) The situation we considered here: Only Alice performs
single-qubit quantum measurement reversal on her subsy#lemeak measuremeri:
decoherenceR: reversing measurement, Sys: system, Env: environment.

using two sets of single-qubit quantum measurement reversal steps, see Fig. 1(b) [24]. In some
cases, decoherence affecting on both subsystems of two-qubit entangled states causes complete
loss of entanglement, i.e., ESD [6]. Interestingly, even in this severe circumstance, the initial
entanglement can be protected by performing quantum measurement reversal on both qubits.
Avoiding ESD is essential in entanglement distribution between two distant parties, since once
distributed entangled qubits completely lose entanglement, entanglement cannot be distilled
between them [25-28].

A question then naturally arises whether preventing an entangled state from completely los-
ing entanglement against ESD is possible by quantum measurement reversal performed only on
one of the qubits rather than on both qubits as shown in Fig. 1(c). For instance, between Alice
and Bob who initially share two entangled qubits, only Alice performs quantum measurement
reversal on her qubit. In this work, we demonstrate that Alice alone can avoid ESD by perform-
ing quantum measurement reversal only on her qubit.

2. Theory

Consider the situation in which a two-qubit entangled state is affected by separate decoherence.
Initially, Alice and Bob share two-qubit pure entangled stete= a |00) + 3|11) where|a |* +

|[3|2 =1 as shown in Fig. 2(a). We assume that each qubit independently suffers from amplitude
damping decoherence. In general, amplitude damping decoherence arises due to the interaction
between the system (S) and the environment (E) and amplitude damping for a single qubit can
be represented by the following operatit)g|0)z — |0)s|0)z and|1)|0)z — vD|1)g|0)g +
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Fig. 2. (a) Alice and Bob initially share a pure entangled si@ie When both subsystems
suffer from decoherence, the final statg loses its entanglement partially or completely.

(b) To suppress decoherence, Alice performs a set of weak measuk&figntand revers-

ing measuremerfa (pr) before and after her subsystem undergoes decoherence, respec-
tively. Then, the resulting staies becomes closer to the initial sta@®), i.e. pa is more
entangled thapp. Note that Bob is not involved in this decoherence suppression scheme.

v/D|0)¢|1)g, where 0< D < 1 is the magnitude of the decoherence &ne 1 — D. Amplitude

damping usually describes the energy dissipation process, for instance, it can be observed from

the state of an atom which spontaneously decays, the state of a photon in an leaky cavity or an

interferometer, and the zero-temperature energy relaxation of a superconducting qubit [19, 29].
Although Alice and Bob initially share a pure entangled stdtg the resulting statep is

not a pure state since each particle suffers from amplitude damping decoherence with strengths

of Da andDg, respectively [7, 24]. The concurrence [30] of the final sfgeCp is given by

Co = max{0.Ap = 2v/DaDa B! (a| - vOADa Bl }. ®

whereCp = Ap if Ap > 0 andCp is always less than the concurrence of the initial state,
2|aB|. From Eq. (1), it is clear that foya| > |B], Co = 0 only whenDa =1 orDg =1,
meaning that the entanglement exists except the case that the fingsstatilly damped by
decoherencell; = 1). On the other hand, fdo| < |B], entanglement completely disappears
when,/DaDg > |a /B[, which is clearly less than the maximum level of the decoherence. Thus,
ESD occurs only ifa| < |B] [7].

Let us now describe our strategy to avoid ESD as shown in Fig. 2(b). At first, Alice and Bob
initially share a pure entangled stdte). Then, Alice performs a weak measurem@ag p)
on her qubit before her qubit undergoes decoherence, see Fig. 2(b). Here, weak measurement
partially collapses a single qubit state towal@s. The weak measurement operafé{p) can
be written asw (p) = |0) (0| + v/1— p|1) (1] wherep is the strength of the weak measure-
ment [20]. Since onlyl)g state undergoes decoherence, the system states can partially avoid
decoherence by reducing the portiorBf; state with weak measurements. Note that the initial
state|®) is transformed intdd’) by a weak measurement ajil) is still a pure state.

Then each qubit undergoes separate decoherencéddnavolves to a mixed statp’.
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Alice now performs a reversing measurem&at(p;) on her qubit as shown in Fig. 2(b).
A reversing measurement is also a weak measurement but it partially collapses the state
towards the opposite direction, i.d1)s. The reversing measurement operator is given as
R(pr) = v1—pr|0) (0| + |1) (1] wherep; is the strength of the reversing measurement. The
reversing strength we used jig = p+ Dap wherep= 1— p [21]. Here, Bob does not play
any role in the whole procedure. Note that the scheme also works well if only Bob carries out
single-qubit quantum measurement reversal on his qubitWgg p) andRg (pr). Note that the
strength of the reversing measurement which Bob performs on his quiitip + Dgp.

After Alice alone performs the single-qubit quantum measurement reversal on her qubit, the
concurrence of the two-qubit stgbg, Ca, can be evaluated by

2,/Ds |B| (|a| - /DaDBP|B)) }
1+DA5[B|2 7

whereCa = Aa if Aa > 0, otherwiseCp = 0. Note thatCp > Cp, meaning thapa is more
entangled thapp. For the case with Bob’s single-qubit quantum measurement revegsisl,
the same a€x except the fact thdda andDg are interchanged, ar@, andCg give the same
value wherDp = Dg = D.

From Eq. (2), we can find several remarkable results. First ofalls monotonic increasing
function of p, meaning that the resulting stgpg becomes more entangled as the weak and
reversing strengths increase. Note that the concurrence of the initia| &tat2|a 8|, cannot
be fully retrieved since only Alice performs single-qubit quantum measurement reversal on
her qubit. However, even in the ESD conditigmy can have non-zero entanglement if the
strengths of the weak and its corresponding reversing measuremesat®@d Dap) are larger
than the threshold value, i.ep,> 1— |a/B|? /(DaDg). Hence, we can conclude that Alice
can avoid ESD by performing single-qubit quantum measurement reversal only on her qubit
without Bob’s help. Once Alice and Bob share non-zero entanglement against decoherence,
they can prepare a maximally entangled state from multiple copies of less entangled states
using entanglement distillation protocols [25-28].

Ca= max{O,/\A = (2)

3. Experiment

The experimental setup for demonstrating that Alice or Bob alone can avoid ESD and prevent
complete loss of entanglement against decoherence using single-qubit quantum measurement
reversal is shown in Fig. 3. Two-qubit entangled states are prepared by two-photon polariza-
tion states which are generated via spontaneous parametric down conversion process. A 6 mm
type-1 B-BaB,O4 crystal is pumped by a 405 nm diode laser beam (100 mW) and a pair of
down-converted photons centered at 810 nm are generated on the frequency-degenerate, non-
collinear phase matching condition. Each down-converted photon is frequency-filtered using
an interference filter with full width at half-maximum bandwidth of 5 nm. Then, the two-qubit
entangled statgP) = o |00) + 3|11) can be prepared using quantum interferometry [31] and
glass-plates oriented at Brewster angle (BPs) [20]. H8y@nd|1) correspond to the horizon-

tally (JH)) and vertically (V)) polarized photons, respectively.

The weak measurement on the polarization qubit can be implemented using BPs since BP
transmits horizontally polarized photons without any reflection while reflecting vertically po-
larized photons with some probability [20]. The reversing measurement partially collapses the
state to the opposite direction, so it can be realized by addingdbwave plates (HWPs) for
bit-flip operations before and after BPs. The strengths of weak and reversing measysement
andpy can be increased by adding more BPs. The amplitude damping decoherence for the pho-
tonic system can be realized using a displaced Sagnac interferometer [7, 22, 24]. In experiment,
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Fig. 3. Experimental setup. A set of BPs and HWPs at the state preparation part is exploited
for preparing the non-maximal entangled states. Weak and reversing measurements are also
implemented by BPs and 45WPs. The amplitude damping channel for single qubit po-
larization state is realized using displaced Sagnac-type interferometer and additional beam
splitters [7,22,24]. IF: interference filter, HWP: half-wave plate, QWP: quarter-wave plate,
BP: Brewster-angle glass plate, PBS: polarizing beam splitter, BS: beam splitter, QST:
quantum state tomography.

the system qubit is encoded in the polarization of the single phokbn=£ |0)g, [V) = |1)g)
and the environment qubit is encoded in the path of the single ph@lerand|1)., see Fig. 3.
Finally, the resulting states are analyzed by quantum state tomography.

4. Resultsand analysis

Before confirming whether our scheme works well, we have investigated how the initial en-
tangled stated) = a|00) + B |11) is affected by the identical decoheren&g (= Dg = D).

We evaluated the concurrence of the final sgdrom the density matrices which are exper-
imentally reconstructed by the quantum state tomography. For the two entangled input states
with |a| = |B] and|a| = 0.481< |B]|, we measure@p (Ap) as increasing the strength of the
decoherencB and the results are shown in Fig. 4(a). As expedpdjecreases d3 increases

in both cases. Note that ESD is observed for the case|cf 0.481.

Then, consider the case that only Alice or Bob alone carries out single-qubit quantum
measurement reversal to avoid complete loss of entanglement when each qubit undergoes
separate decoherence. We performed the experiment for the identical damping case, i.e.,
Da = Dg = D. In addition, to simulate the situation in which ESD can take place, we chose
D = 0.617+0.017. Figure 4(b) shows the experimental resultsGgarandCg (Aa and Ag)
as a function ofp for two initial entangled states. We have collected experimental data up to
p = 0.617 due to low success probabilities associated with weak and reversing measurements
for largerp. As expected from Eq. (2;a andCg become larger agincreases. In addition, for
the input state witha | = 0.481 which experiences ESD without introducing quantum measure-
ment reversalCa andCg can have non-zero values when strengths of the weak and reversing
measurements are larger than the threshold value. This result demonstrates that Alice and Bob
can share non-zero entanglement even in the ESD condition using only single-qubit quantum
measurement reversal, i.e., ESD can be avoided by Alice or Bob alone.

#214791 - $15.00 USD Received 27 Jun 2014; accepted 11 Jul 2014; published 29 Jul 2014
(C) 2014 OSA 11 August 2014 | Vol. 22, No. 16 | DOI:10.1364/0OE.22.019055 | OPTICS EXPRESS 19060



(a) 1.0

Ay (ol = 1/v2)|

g 0.8
© 0.6 B Ap (Jo| =0.481)| |
Q
2 04
g
3 02
5
o 0

-0.2 i i

0 0.2 0.4 0.6 0.8 1.0
Decoherence D
b) o

= 08F|® M (lal = 1/V2)
o B Ap (jo| =1/v2)

0.6 71 & A4 (la] = 0.481)

04 | ® Ap (la| =0.481) PR /

1
o

Concurrence

. s

o

oj.lr

02 04 0.6 0.8 1.0
Weak measurement strength P

Fig. 4. (a) Concurrenc€p of the resulting stat@p decreases as the strength of the deco-
herence D) increases. (b) Concurren€ (Cg) of the final stateoa (pg) in the case that
only Alice (Bob) perfroms single-qubit quantum measurement reversal on her (his) qubit
(Da = Dg = 0.617). p is the strength of the weak measurement. Solid lines are theoretical
results. Negative values correspondship for (a), andAa andAg for (b), respectively.
Note thatC = 0 whenA < 0 sinceC = max{0,A}. We evaluated the fidelity between the
ideally expected state and the experimentally reconstructed stajm fand pg. The fi-

delity values forpa (Fa) andpg (Fg) are averaged from the experimental data of (b), and
we obtainFa = 0.945+4+0.024 andFg = 0.935+0.028.

5. Conclusion

When two entangled qubits, each owned by Alice and Bob, experience separate decoherence,
the amount of entanglement decreases and sometimes ESD occurs. We have demonstrated that
Alice or Bob alone overcomes ESD and still share non-zero entanglement after decoherence
with quantum measurement reversal on only one of the two entangled qubits. Since any small
amount of entanglement shared by Alice and Bob can be concentrated, we believe that our
scheme has important applications in quantum information protocols based on distributed or
stored entangled qubits as they are subject to decoherence. Moreover, our scheme can be di-
rectly applied to other qubit systems experiencing decoherence, such as, two-level atoms with
spontaneous decay, superconducting qubits with zero-temperature energy relaxation, and so on.
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Appendix : Reversing measurement strength under decoherence

When an initial quantum statgi,) = a |0) + |1) does not suffer any decoheren&e=£ 0),
the reversing measurement for the weak measureMgmt) = |0) (O] + v/1—p|1) (1] is
R(pr) =+/1—pr|0) (0| + 1) (1] with p; = p[17]. The quantum stat@li,) = a |0) + 3 ]1) is re-
trieved without errors only whep, = p, and, thusp; = pis the optimal reversing measurement
strength foiD = 0. Note that the optimab, is independent orr in this case.

However, when decoherence is introduggdy= p is not the optimal measurement anymore
and the “optimality” of the reversing measurement strength becomes highly non-trivial. In gen-
eral, pr is dependent on several parameters sudb, g5 anda. Since the initial state cannot be
retrieved perfectly, the optimad, value is different for maximizing, e.g., the state fidelity, the
success probability, the concurrence, etc. Moreover, the oppimaldiue is also dependent on
the condition of the decoherence suppression scenarios. In this section, we investigate several
reversing measurement strategies and compare them with respect to the state fidelity and the
success probability. Here, we consider three different situations i) a single qubit state suffers
decoherence [21, 22], ii) both subsystems of the two-qubit entangled state suffer from decoher-
ence (the scenarios considered in [24] and in this manuscript), and iii) one subsystem of the
two-qubit entangled state suffers from decoherence.

Al. Sngle qubit case

As shown in Fig. 1(a), if a set of weak measurematip) and reversing measuremeRr(tp, )
measurements are performed before and after decoher@jhcan(initial qubit statd(s,) =
a |0)+ B 1), where|a|?+ |B|? = 1, is transformed to the final stapg,y, given as

%m:3;<ﬁ(mﬁ+ommﬁ vﬁiﬁw*)7
Ps\ VpDpa*p DB
whereD=1-D, p=1—p, pr = 1— p;. The success probability or channel transmittance is
Ps=p: (|al”+DpIBI°) + DpIBP [21,22].

One way to quantify performance of the decoherence suppression scheme is evaluating

the state fidelity between the initial stapg, = |Win) (Yin| and the final stat@ou, i.€., F =
(Win| Pout|Wn), which is calculated to be

__1-plBl* - plal*~ OPIBF[1+ (b —2)|af?] - 2alpl* 1 VpDP)
1-Dpr —Dpr|al®~p(1—-Dpy) B '

®3)

(4)

Then, the reversing measurement strergtf* value which gives the maximum fidelity value
Fmaxis

DpIBI2(laf?-IB12)°+al?
DpIBI2+|al? )

max_ __1-plpP mmpxﬂzﬁﬂaﬂathﬂMZWQV
Y T T

Note thatp"® depends omr, D, andp.

However, in practical decoherence scenario, we may assume that we know the magnitude of
decoherenc® while we do not have any prior information about the initial staig), i.e.,a
is an unknown parameter [22, 24]. We consider two different state indepepdealties. First,

we obtainp, by substitutinga| = 1/+/2 into Eq. (5),
. 2D+p-—2Dp
fix
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wherep{X is now state-independent, meaning tht is not a functiora.

Second, we choosg to be py® = p+ (1— p)D which is used in our paper [21,22]. The
reasons we chogg " are the following: i)p; ‘P is state independent, i.g, P is not a function of
a and ii) the state fidelitfF asymptotically approaches to 1 as the weak measurement strength
p — 1 regardless ofr.

We now compare the state fidelity valuesetween the initial and final states for two dif-
ferent reversing measurement strengthand pr P, The state fidelity values for the strength of
the reversing measuremauft andp; ¥, respectively, are calculated to be

1+|BI°Dp—2|ap|* (1~ I+ Dp)

FfiX:
—1ni2
1+2Dp|g]

; (7)

and

EexP — 1+D§|GB|2
1+Dp|B)?

F™M& can be obtained by substituting'®to Eg. (3). Note thaE ™ is always higher than both
of F™* andF® regardless ofa|, D, andp. However, to achievE™®, we need to know prior
information about the initial state, meaning that the decoherence suppression scheme becomes
state dependent. Thus, here, we focus on comp&fifywith F ™.

The numerical results for the state fidelities for reversing strengthsand pf® when
D = 0.617 are shown in Fig. 5(a). Note th&f*® > FfX when|a| is larger thanB|. Since
our decoherence suppression scheme exploits weak measurement, the success probability of
the scheme is not unity. Hence, the success probability is also an important parameter for quan-
tifying the performance of the scheme. The success probabilitiggandp;y®, respectively,

(8)

Fig. 5. Result of the scenario in Fig. 1(a) with= 0.617. (a) State fidelities ™ andFexP
as functions ofja| and p. FiX and F&P increase as the weak measurement strepgth
increases. (b) Success probabilittfs andPS® as functions ofa| and p. PSP is always
larger tharPgX regardless ofa| and p values. Note thaf — 1 andPs — 0 asp — 1 for

both cases opf* and p;*®.
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are given by

Dp(1+20pIBP)

PﬁX — _
s 1+Dp

and PSP = Dp(1+me|) 9)

P can be obtained by substituting]'®* into Ps of Eq. (3). Note that, in most casd%y'® is
lower thanP* andPS™® sincep™® is chosen for maximizing the state fidelRy

Figure 5(b) represents the success probability dependencie$andp for different revers-
ing measurement strengths wher= 0.617. As shown in Fig. 5(b)3€Xp > PIX for all values
of |a] andp. In the single qubit case, the reversing measurement strtf.ﬁ@h: p+(1-p)D
is more efficient thap™ andp{™ in terms of the success probability.

A2. Two-qubit case: Both subsystems suffer from decoherence and two pairs of weak and re-
versing measurements are performed

We consider the situation shown in Fig. 1(b) in which the initial two-qubit entangled state

|®) = a|00) + B|11), where|a|?+ |B|* = 1, suffers from separate decoherence and two pairs

of weak and reversing measurements are applied to suppress decoherence [24]. To simplify
the situation, we assume that each subsystem undergoes the same magnitude of decoherence
(Da = Dg = D) and the strengths of weak measureméfitgp) and\Ws(p), and reversing
measuremen®Ba(pr) andRs(pr) performed on each subsystem are the same. Then, the output
statepoyt is given as

(laP+D2BPR)P2 0 0 pap’
1
Pout= o 0 D|B| D 20— 0 (10
Ps 0 0 D |B|*Dp*py 0
pDp,a*B 0 0 B> D?p?

wherePs = p,D|a|? (Dp; + pr — 2) + (Dpy — 1)2 (1— p?|B|? + 2p|[3|2) is the success proba-
bility. The state fidelity between the initial state and the output state is obtained to be

1BID% [l (pr —2)pr+ 1] 216D+ a? (p— p)] + [+ a2 (p— po) |

, (11)
|al*Dpr [(D+1)p: —2)+ [|B (P~ 2)p+1] (Dpr — 12
and the reversing measurement strength maximigiregy
_ , Dpx/aszﬁz@asz
N 2 22112
max _ Dp+2plal” |a/+D2p?|B| (12)

~ 2|al*(1-Dp) 2|al?(1-Dp)

if i) |a| > % orii) |al < % and Dp|BJ® < |al? < p|B|% Otherwise,p; = 1 maximizesF,
meaning that the reversing measurenmgrghould be projection measurement regardless of the
weak measurement strength

As we did in the single qubit casgf* is obtained by substituting = 1//2 into Eq. (12)
and we obtain

i /D22 Db

T D2p2+1
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Fig. 6. Result of the scenario in Fig. 1(b) wibhy = Dg = 0.617. (a) State fidelitie& ™
andF®*® as functions ofa| and p. The state fidelities increase as the weak measurement
strengthp increases. (b) Success probabiliniég andPSeXp as functions ofa| andp. Note
thatPs — 0 asp — 1 for all both cases.

and the corresponding state fidelf{* for pfX is given as

o 2|af’|BP (v/D?P+1-1) + D22 (B +1

(14)
20p|B[* (\/D?PP+1+Dp) +1
On the other hand, the state fidelf§*® for pr > = p+ (1 — p)D is calculated to be
2521412132

1+ DpIB*(Dp+2)

The numerical results for the state fidelitiesor pf* and p; > are shown in Fig. 6(a). As
shown in Fig. 6(a), the general tendencyFd¥ andFe*P are similar to the results of the single
qubit case, see Fig. 5(@%Pis generally larger thaR™ when|a| is larger thar|B.

Finally, the success probabilities fpf* andp;®, respectively, are calculated to be

(DR8P 2 oppIgl2
PEX:D2p2< P°IB|"+ o] n PIB| 182, (16)

D2p?+1 VD22 +1

and
PSP~ D?0? |1+ DPIBP (DP+2)] (17)

Figure 6(b) shows the success probabilifiesor various reversing measurement strength
pr. As shown in Fig. 6(b)PS® is always larger thaRX in any combination ofa| andp. The
general tendency of the success probabilities are similar to the single qubit caseﬂgi“fhat
larger tharPfX.

A3. Two-qubit case: Both subsystems suffer from decoherence and one pair of weak and revers-
ing measurements are performed

In this section, we consider the scenario of this paper, see Fig. 1(c). Each subsystem of the initial
entangled statgb) = a |00) + B]11), where|a|? + |8|? = 1, undergoes separate decoherence
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and a set of weak measurem&wi(p) and reversing measuremeRk(pr) is performed only
on the subsystem undergoing decoherence (A). If we assume each subsystem undergoes the
identical decoherenc®p = Dg = D), the output stat@oyt is given as

p (D?pIBP +]af?) O 0 ap'DVR/A
. 0 DDpIB|* pr 0 0
MR 0 o  Dpbplp’ 0
a*BDVPVPr 0 0 D?plBI®

wherePs = |a|*[p— pr (D+Dp)] + p(1— Dpy) and the corresponding state fidelity between

the initial state and the final state is calculated to be

F _ D?PBE(1-|alpr)2lal*(vPpr—1)(DIB~1)~|a[*(2y/PPr-+pr—2) ~2D|B*+(2D-1)p|p|*+1
(PIBI*~1)(Dpr—1)-Dla[*py

Since the reversing measurement strergft which maximizes- is rather complicated and

cannot be simplified, we providg™ instead ofp™*. pfX is calculated to be

. (19)

(2Dp+p) [2— Dﬁ(mzom p)+ \/D [D((205+p)? - 45) ~ 4p) +4_2ﬂ
2(Dp+1)*

fix _

Pr

. (20)

Since the final expressions Bf* and ng are also complicated, we omit their analytic ex-
pressionsk &P andPS™® values forpr ™, respectively, are given as

~ D?plaf’BP+2(VD-1)lal’|BP~DB|* +1

FexP — , (21)
DpIB[*+1
and
eX S ~1n|2
Q;R:Dp(DmB|+1). (22)
Fig. 7. Result of the scenario in Fig. 1(c) wiy = Dg = 0.617. (a) State fidelitie§ ™
andF®*P as functions ofa| and p. The state fidelities increase as the weak measurement
strengthp increases. (b) Success probabilit#l% andPS™ as functions ofa| and p. P
is always larger thalfl’sexp regardless ofa| and p values. Note thaE does not approach to
unity andPs — 0 asp — 1 for both cases off* and pr ®.
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Although we do not provide explicit forms & andP* due to their complexity, we show
numerical results to compafé™ andPI with F&P andPS®, respectively. Figure 7(a) shows
the state fidelity results for various reversing strengths. Since a single pair of weak and revers-
ing measurements cannot suppress two independent decoherence, the state Fidwitiest
achieve unity even in the case that> 1. Note that- — 1 asp — 1 in both of Fig. 5(a) and
Fig. 6(b). Another thing to note is th&™ is larger tharF®* when|a| is larger thanB| in
Fig. 7(a) whileF®® is larger thanF™ when|a| is larger than|B| in both of Fig. 5(a) and
Fig. 6(a). Interestingly, the difference betweeft, andF*P is very small in any combination
of |a| andpin Fig. 7(a).

The general tendency of the success probabilities in this case are opposite to the previous
cases, see Fig. 7(* is always larger thaRS ™ in Fig. 7(b); howeverPS™ is always larger
thanPgX in both of Fig. 5(b) and Fig. 6(b).

A4. Two-qubit case: One subsystem suffers from decoherence and one pair of weak and revers-
ing measurements are performed

Finally, we consider the case of Fig. 1(c) wiih, = D andDg = 0. Here only the subsystem A
of the initial entangled state) = a |00) + 8 |11), where|a|* + |B|* = 1, suffers from decoher-
ence and a set of weak measuremaftp) and reversing measuremedRd(pr) is performed
on the subsystem A. Then, the output stagg becomes

|al? pr ° 0 vDypyprap’
_1 0 DIBI"ppr O 0
Pout = PS 0 0 0 0 ) (23)

vDypypra®B 0 0 |BI°Dp

wherePs = |B|°Dp+ |B|?Dppr + |a|? pr and the state fidelity between the input state and the
output state is given as

__ DPIBI*+fal* (2v/Dpr + pr ~2) —2lal? (VOPP — 1) + pIBI* -1 o
Dlaf*pr+ (pIB[*~1) (1-Dpy)
and the reversing measurement strengif* that maximize$ is

2221214 NAly 2 2 4
oo D°FIBI"-0plal* (P + 1)+ plar*

P = w2 (25)
(lal*~DpIBP)
Then,p™ is evaluated by substituting = 1/1/2 into Eq. (25) ang{X is given as
=
(Dp-1)
The state fidelity values fquf* andpy’®, respectively, are given as
2
— 2
o (PIBE+1) oo 1 e
DpIAI*(Dp+3)+1 DpIBI* +1
The success probabilities fpf* and pr P, respectively, are given as
_ Dp|DpIBI* (Dp+3)+1] _
pfix — , and PS*=Dp(Dp|BI*+1). 28
! Cr S~ Dp(DPIBP+1) (28)
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(b)

Fig. 8. Result of the scenario in Fig. 1(c) wihy = 0.617 andDg = 0. (a) State fidelities
F™ andF®P as functions ofa| andp. (b) Success probabilitigd* andPS® as functions
of |a| andp. PSP is always larger thaRX regardless ofa| andp values. Note thaf — 1

andPs — 0 asp — 1 for both cases off* andpy*.

The numerical results for the state fidelities and the success probabilities for various reversing
measurement strengths are shown in Fig. 8. In this scheme, the general tendencies of the state
fidelities and the success probabilities are similar to the single qubit case shown in Fig. 5, i.e.,
FeP > FiX when|a| is larger thariB| andPS® > PIX regardless ofa| andp.

A5. Conclusion

In conclusion, we have investigated the state fidelfiesnd the success probabilitiésfor var-

ious decoherence suppression schemes. Our results suggest that there is no reversing measure-
ment which maximizes the state fidelity and the success probability simultaneously. In many
cases, a trade-off relation betweerandPs holds, in other words, the higher the state fidelity,

the lower the success probability, vice versa. Therefore, one should choose apropkre

for a specific application, after carefully considering the trade-off relation.
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