
            

COMMENT • OPEN ACCESS

Comment on ‘Non-monotonic projection
probabilities as a function of distinguishability’
To cite this article: Young-Sik Ra et al 2014 New J. Phys. 16 118003

 

View the article online for updates and enhancements.

Related content
Reply to comment on ‘non-monotonic
projection probabilities as a function of
distinguishability’
Gunnar Björk and Saroosh Shabbir

-

Interference of identical particles from
entanglement to boson-sampling
Malte C Tichy

-

Many-particle interference beyond many-
boson and many-fermion statistics
Malte C Tichy, Markus Tiersch, Florian
Mintert et al.

-

Recent citations
Sampling of partially distinguishable
bosons and the relation to the
multidimensional permanent
Malte C. Tichy

-

Double-Fock superposition interferometry
for differential diagnosis of decoherence
Malte C Tichy et al

-

Reply to comment on ‘non-monotonic
projection probabilities as a function of
distinguishability’
Gunnar Björk and Saroosh Shabbir

-

This content was downloaded from IP address 141.223.46.116 on 21/12/2020 at 06:38

https://doi.org/10.1088/1367-2630/16/11/118003
/article/10.1088/1367-2630/16/11/118004
/article/10.1088/1367-2630/16/11/118004
/article/10.1088/1367-2630/16/11/118004
/article/10.1088/0953-4075/47/10/103001
/article/10.1088/0953-4075/47/10/103001
/article/10.1088/1367-2630/14/9/093015
/article/10.1088/1367-2630/14/9/093015
http://dx.doi.org/10.1103/PhysRevA.91.022316
http://dx.doi.org/10.1103/PhysRevA.91.022316
http://dx.doi.org/10.1103/PhysRevA.91.022316
http://iopscience.iop.org/1367-2630/17/2/023008
http://iopscience.iop.org/1367-2630/17/2/023008
http://iopscience.iop.org/1367-2630/16/11/118004
http://iopscience.iop.org/1367-2630/16/11/118004
http://iopscience.iop.org/1367-2630/16/11/118004


Comment

Comment on ‘Non-monotonic projection probabilities
as a function of distinguishability’

Young-Sik Ra1, Malte C Tichy2, Hyang-Tag Lim1, Osung Kwon1,
Florian Mintert4,5, Andreas Buchleitner3 and Yoon-Ho Kim1

1Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang,
790–784, Korea
2Department of Physics and Astronomy, University of Aarhus, DK–8000 Aarhus C, Denmark
3 Physikalisches Institut der Albert-Ludwigs-Universität, Hermann-Herder-Str. 3, D-79104
Freiburg, Germany
4 Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität, Albertstrasse 19,
D-79104 Freiburg, Germany
5Department of Physics, Imperial College London, London SW7 2AZ, UK
E-mail: yoonho72@gmail.com

Received 7 July 2014
Accepted for publication 13 October 2014
Published 28 November 2014

New Journal of Physics 16 (2014) 118003

doi:10.1088/1367-2630/16/11/118003

Abstract
A recent work (Björk and Shabbir 2014 New J. Phys. 16 013006) claims that
nonmonotonic structures found in the many-particle quantum-to-classical tran-
sition (Ra et al 2013 Proc. Natl Acad. Sci. USA 110 1227–31; Tichy et al 2011
Phys. Rev. A 83 062111) are not exclusive to the many-body domain, but they
also appear for single-photon as well as for semi-classical systems. We show that
these situations, however, do not incorporate any quantum-to-classical transi-
tion, which makes the claims unsustainable.

Keywords: quantum-to-classical transition, nonmonotonic transition, multi-
photon interference

Recently, reference [1] reported on the nonmonotonic dependence of projection probabilities of
quantum states, observed for a single-photon state and semiclassical states. Based on this
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observation, reference [1] argues that the nonmonotonic change of many-particle event
probabilities observed in [2, 3] is ‘not unnatural’ and ‘not a manifestation of a quantum-to-
classical transition’. Here, we show that the situation considered in reference [1] is qualitatively
different from the scenario in [2, 3], such that the conclusions of reference [1] cannot be
sustained.

Let us first rigorously establish the quantum-to-classical transition considered in [2, 3]. In
the quantum realm, event probabilities are determined by the sum of complex probability
amplitudes of all processes leading to the event in question, figure 1(a): the probability
amplitudes are added, and the absolute value of the sum is squared. In the classical realm, event
probabilities are obtained by adding the probabilities of all disjoint processes leading to the
event, see figure 1(b). Within the quantum regime, due to the interference of probability
amplitudes, event probabilities oscillate as a function of the relative phases between the
amplitudes. Such phase-dependence is absent in the classical realm.

The situation sketched in figure 1 applies to both single- and many-particle interference.
For example, in the two-particle experiment sketched in figure 2, two-particle amplitudes (Att

and Arr) of two indistinguishable particles need to be added to infer the quantum mechanical

Figure 1. The double-slit experiment with a single particle. In (a), interference is
observed, which requires a quantum description: probability amplitudes A1 and A2 are
added. On the contrary, in (b), no interference is observed, and a classical description is
sufficient: probabilities P1 and P2 are added.

Figure 2. The Hong–Ou–Mandel experiment using a 50:50 beamsplitter (BS). Two-
particle paths of both photons transmitted (upper panels) and both photons reflected
(lower panels) (a) interfere in the quantum realm, but (b) they do not in the classical
realm. Therefore, probability amplitudes Att and Arr are added in the former, but
probabilities Ptt and Prr are added in the latter.
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coincidence event probability, while the sum of the probabilities Ptt and Prr matches the event
probability in the classical realm. Similar to single-particle interference, many-particle
interference can also exhibit phase-dependent oscillations when the relative phases between
many-particle amplitudes are varied [3–5].

The transition to the classical regime is induced by lifting the indistinguishability of the
processes that contribute to an event [6–8]. In particular, the detection of any distinctive
property of such process (whether controlled by the experimentalist or uncontrolled by the
environment) provides which-way information, hence renders different processes distinguish-
able, and leads to a reduced (if not completely suppressed) ability to interfere [9]. For a single
particle that can take two slits to fall onto a screen, the observation of the path of the particle
leads to the breakdown of the interference pattern; in close analogy, the path delay between
identical particles controls the indistinguishability of the interfering processes (i.e. of the many-
particle paths) [10]. We emphasize that, during such transition, acquiring which-path
information does not change the amplitude of either path, but it solely affects the degree to
which probabilities, instead of probability amplitudes, are added.

Intuitively, one may expect that the total event probability can always be written as

α α= − + P P(1 ) , (1)classical quantum

where α ∈ [0; 1] suitably quantifies the degree of interference and mediates the transition from
the event probability in quantum realm Pquantum to that in classical realm Pclassical. Any
dependence on the relative phase or other parameters is implicit in Pquantum. This relation
remains valid for one- or two-particle interference, in which only fully quantum and fully
classical terms arise. Therefore, every observable that is monitored during the transition
between the quantum and classical behavior of one or two particles features a monotonic
dependence on the degree of coherence α. However, [2, 3] report that multi-particle event
probabilities can be nonmonotonic, which rules out a generalization of the intuitive description
inherent to equation (1). Instead of a purely classical and a purely quantum contribution, the
probability for an N-particle event needs to be written as

∑ α=
=

 W P( ) , (2)
d

N

d d

0

2

where d is the number of particles that interfere, and αW ( )d and Pd are the corresponding weight
and the associated event probability, respectively. The case d = 0 can be identified with the
classical, d = N with the quantum realm. Since the probabilities Pd do not obey any ordering (in
general, neither ⩽ ⩽P P P ...0 1 2 , nor ⩾ ⩾P P P ...0 1 2 ), the event probability described by
equation (2) is, in general, more involved than one described by equation (1). In particular,
it can be nonmonotonic in α.

An exception of this general behavior is described in [2]: A bunched final event with all
particles in one mode can be reached by one many-particle path only, leaving no place for any
phase-dependent interference. The enhancement of such events purely relies on bosonic
bunching, and not on the interference of different physical processes. Since no amplitudes with
different phases appear, greater indistinguishability always leads to an enhancement of such
events and to > > >−P P P...N N 1 0, which implies a monotonic transition. Most importantly,
this enhancement does not ‘fortuitously turn [..] out to be monotonic’ as stated in reference [1],
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but the absence of different many-particle paths forces every transition to a bunched final state
of the form N( , 0, ... , 0) to be monotonic.

In contrast to the hitherto established scenario, the examples put forward in reference [1]
do not mediate a quantum-to-classical transition. The transition given in reference [1]
interpolates from a pure state to another pure state, without loss of interference capability at any
stage. Let us take equation (8) in reference [1] as an example,

ψ γ π γ π γ= + + +( ) cos( 4 2) 1, 0 sin( 4 2) 0, 1 , (3)D
1

where 〉|1, 0 ( 〉|0, 1 ) denotes a horizontally (vertically) polarized single-photon state, and γ
changes from 0 to π 2, inducing a transition of the state from 〉 + 〉(|1, 0 |0, 1 ) 2 to 〉|0, 1 . The
state is projected onto ξ π π〉 = 〉 − 〉| cos( 8)|1, 0 sin( 8)|0, 1D

1 , resulting in the projection

probability ξ ψ γ〈 〉| ( )D D
1 1

2
, which is nonmonotonic as a function of γ. However, this transition

cannot be identified as a quantum-to-classical transition by any means; it neither includes a
transition to a mixed state nor does it involve any which-path information that degrades
interference capability. The nonmonotonicity exhibited by the other examples in reference [1]
(figures 3 and 5 therein) has the same origin, none of these examples is related to the quantum-
to-classical transition.

Figure 3. Nonmonotonicity in three-fermion interference. (a) Fermions of coherence
length lc are prepared in the state ⃗ =r (0, 0, 1, 0, 0, 1, 0, 0, 1), i.e. only the third,
the sixth, and the last input modes are populated. The particles are delayed by a
displacement x with respect to each other and scatter off a 9-mode Fourier-
multiport, for which every single-particle probability is 1 9 [13]. The number of
particles in each output mode, represented as ⃗ =s s s s( , , ,...)1 2 3 , is measured. (b)
Probabilities for different final events. For ≫x lc, the particles can be treated as
distinguishable, and the event probabilities can be obtained by combinatorics, i.e.

⃗ = = ⃗ = = ⃗ = =P s P s P s( (1, 1, 1,...)) 3! 9 , ( (2, 1,...)) 2! 9 , ( (3,... )) 1 93 3 3. When
the displacement is reduced, the quantum realm is attained. The event probabilities
for ⃗ =s (1, 2,...) (red solid) and ⃗ =s (3,...) (blue solid) decay monotonically with
increasing interference capability and eventually vanish for x = 0. The events
allowed by the Pauli principle (black dashed, dotted and dash-dotted lines) can
evolve in a nonmonotonic fashion, in close analogy to the effects observed in [2].
The event probabilities are computed in direct analogy to the methods developed in
[2, 3], taking into account the anti-commutativity of fermionic creation operators.
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In reference [1], γ is claimed to vary ‘distinguishability’, but that ‘distinguishability’ is
used in a different sense compared with the generally accepted usage. Distinguishability is
generally used to indicate the distinguishability of different processes (e.g. different paths of
particles), i.e. distinguishability degrades interference [9–12]. On the other hand, the
‘distinguishability’ in reference [1] affects the overlap of the state ψ γ 〉| ( )D

1 with an unbiased

(in terms of its basis 〉 〉{|1, 0 , |0, 1 }) state ψ 〉 = 〉 + 〉| (0) (|1, 0 |0, 1 ) 2D
1 , i.e. it governs the

magnitude of ψ ψ γ〈 〉(0)| ( )D D
1 1

2
. Therefore, while general distinguishability adjusts the degree

to which probabilities instead of probability amplitudes are added, the ‘distinguishability’ in
reference [1] changes the very probabilities themselves: in equation (3), γ defines the probability
to populate the horizontal and the vertical modes. Formally, γ varies the predictability [9], i.e.
the capability to predict in which mode the particle resides, rather than the degree of
interference between different modes. As a result, the ‘distinguishability’ in reference [1] does
not mediate the quantum-to-classical transition. If the degree of interference is varied, a
monotonic rather than a nonmonotonic probability transition emerges, evident from equation
(14) of reference [1].

In contrast to the statements regarding fermions in reference [1], many fermions can
interfere collectively in a non-trivial way beyond Pauli exclusion effects: As soon as the number
of available modes is larger than the number of particles, fermions can collectively interfere just
as bosons do [4, 13]. In particular, many-fermion interference is governed by the very same
principles as many-boson interference [13]. As a consequence, many-fermion signals can
exhibit nonmonotonic features just like many-boson signals, as evident from figure 3, which
shows the probabilities of exemplary events for three interfering fermions of varying
distinguishability in a 9-mode Fourier-multiport. The experimental observation of such
fermionic nonmonotonicity is admittedly challenging, but recent developments in the
simulation of fermions via entangled photons [14] or the interference of electrons [12] feed
the hope that such experiments become feasible in future.

In conclusion, we have shown that the criticism in reference [1] on [2, 3] is inappropriate.
In the first place, references [2, 3] do not claim that a nonmonotonically evolving probability
should always be regarded as a signature for the quantum-to-classical transition. Instead,
references [2, 3] report that, in the multi-particle quantum-to-classical transition, probabilities
are typically nonmonotonic, which we generalized here for fermions in figure 3. The examples
presented in reference [1] cannot be regarded as quantum-to-classical transitions by any means,
and the nonmonotonic probabilities in reference [1] are not rooted in the quantum-to-classical
transition, but in a unitary evolution of pure quantum states.
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