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Abstract: Entanglement is known to be an essential resource for many
quantum information processes. However, it is now known that some quan-
tum features may be acheived with quantum discord, a generalized measure
of quantum correlation. In this paper, we study how quantum discord, or
more specifically, the measures of entropic discord and geometric discord
are affected by the influence of amplitude damping decoherence. We also
show that a protocol deploying weak measurement and quantum measure-
ment reversal can effectively protect quantum discord from amplitude
damping decoherence, enabling to distribute quantum correlation between
two remote parties in a noisy environment.
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1. Introduction

Quantum correlations are essential resources that make various quantum informational pro-
cesses possible, and quantum entanglement has been in the vanguard due to its fundamental
roles in non-locality and advantages in many quantum information processes [1, 2]. However,
entanglement is not the only quantum correlation. Ollivier and Zurek proposed another type of
quantum correlation, now known as quantum discord, from the perspective of information the-
ory [3]. Quantum discord is a measure of nonclassical correlations between two subsystems of
a quantum system. The correlations arise from quantum physical effects. However, it does not
necessarily require quantum entanglement. Hence, there exist separable states with non-zero
discord. There have been significant efforts made to understand the operational meanings of
quantum discord [4, 5], and find its applications in quantum information processing [6–8].

Quantum correlations, both entanglement and quantum discord, can be degraded by deco-
herence which is often caused by unavoidable coupling with the environment. There have been
many studies that attempt to protect entanglement by tackling decoherence. For example, one
can distill a highly entangled state from multiple copies of partially entangled states [9–12].
Decoherence-free subspace [13,14] and quantum Zeno effect [15] can be also used to cope with
decoherence. Recently, it has been shown that the weak measurement and its reversal measure-
ment can effectively protect entanglement from the amplitude damping decoherence [16]. Many
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of these protocols might be suitable for protecting quantum discord, however, no quantitative
research has been done to show the feasibility of the protection of quantum discord. Since
quantum discord can exist without entanglement and it provides quantum advantages, protect-
ing quantum discord can be useful for some quantum information tasks.

In this paper we revisit the original protocol that utilizes the weak measurement and quantum
measurement reversal in order to supress the effect of decoherence [16–19] and investigate the
protocol in terms of quantum discord. We theoretically and experimentally evaluate the effec-
tiveness of quantum measurement reversal in protecting the amount of quantum discord. Our
results ultimately verifies that general quantum correlations can be protected by the protocol.

The remainder of the paper is organized as follows: After a brief review of quantum discord
in Section II, we provide a numerical method to estimate quantum discord from a given den-
sity matrix in detail in Section III. Then, we introduce the weak measurement and quantum
measurement reversal protocol as well as the simulation result on quantum discord in Section
IV. The experimental setup and discussion is provided in Section V, and finally, in Section VI,
we summarize our research and conclude.

2. Quantum discord: the definition

There exist variant versions of quantum discord, which will be introduced and discussed in the
following subsections.

2.1. Entropic discord

For a classical system, information entropy or the Shannon entropy measures the ignorance
about a discrete random variable X with possible values {x1,x2, ...,xn}. If the probability mass
function is defined as P(xi), then the Shannon entropy is defined as follows [3, 20]:

H(X) = ∑
i

P(xi)I(xi) =−∑
i

P(xi) logb P(xi), (1)

where I is the information content of X , and b = 2 for bits. Using the definition of the Shannon
entropy, we can find the mutual information of two random variables A and B,

I(A : B) = H(A)+H(B)−H(A,B), (2)

where H(A,B) denotes the joint entropy of two random variables A and B.
The quantum equivalence of information entropy and mutual information are similar to their

classical counterparts. In quantum information theory, the entropy of a density matrix ρ is given
by the von Neumann entropy,

S(ρ) =−Tr(ρ logb ρ). (3)

Note that, for qubits, b = 2 since this normalizes the maximum entropic information of a qubit
to 1. For a joint density matrix ρAB, the mutual information I(ρAB) shared by quantum systems
A and B is given by the following equation:

I(ρAB) = S(ρA)+S(ρB)−S(ρAB), (4)

where ρA(ρB) can be deduced by the partial trace TrB(A) ρAB. In order to get the amount of
quantum discord D(ρAB), one needs to deduct the measure of correlation in the classical limit
J(ρAB) from the mutual quantum information I(ρAB):

D(ρAB) = I(ρAB)− J(ρAB), (5)
J(ρAB) = sup

{Bk}
I(ρAB|{Bk}), (6)
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where {Bk} is a set of measurements performed locally on the system B.
It is noteworthy that quantum discord is not generally symmetric under the exchange of

the local system measurements. For instance, if we can perform a set of measurements {Ak},
instead of {Bk}, then we may get a different amount of quantum discord. Note that a symmetric
discord has been proposed in order to ensure the symmetry [21]. Nonetheless, this paper follows
the traditional definition of quantum discord, because the system of interest generally considers
the environment that has symmetric effects on the systems A and B.

2.2. Geometric discord

Because we need to find the supremum of I(ρAB|{Bk}), the quantum discord between systems
A and B is not trivial to calculate. In fact, except for special classes of states such as two-qubit
X density matrices, there does not exist a closed form solution for quantum discord [22,23]. As
a consequence, one needs to implement complex numerical methods in order to calculate the
amount of quantum discord which is presented in Sec. III.

In order to overcome this problem, Dakic et al. introduced geometric quantum discord that is
based on the Hilbert-Schmidt distance between the density matrix ρAB and its closest classical
state ρc

AB, i.e., D(ρc
AB) = 0 [24, 25]. Its definition is as follows:

DG(ρAB) = inf
{Bk}
||ρAB−ρ

c
AB||1, (7)

where ||X ||1 is the Hilbert-Schmidt 1-norm, defined as ||X ||1 = Tr(
√

X†X). This definition of
quantum discord also requires numerical methods. However, the calculation process is much
simpler and faster compared to the entropic definition of quantum discord since there is no
need to perform logarithms of matrices.

There is another definition of geometric discord, based on the Hilbert-Schmidt 2-norm,

D(2)
G (ρAB) = inf

{Bk}
||ρAB−ρ

c
AB||22, (8)

where ||X ||2 =
√

Tr(X†X). However, recently it has been pointed out that this definition is not a
good measure of quantum correlation, because it may increase under local reversible operations
on the unmeasured subsystem [26]. Hence, the discussion about the 2-norm definition will be
omitted in this paper.

3. Numerical methods for quantum discord estimation

In this section, we provide numerical methods to calculate two different definitions of quan-
tum discord, entropic discord and geometric discord. For simplicity, the discussion starts with
two-qubit density matrix (2⊗ 2 systems), and we extend the discussion further for any multi-
qudit systems (d⊗ d′ systems). Note that the computational complexity of quantum discord
is classified as NP-complete [23]. Hence, resources required for computing quantum discord
grow exponentially with the dimension of the Hilbert space. For any d⊗d′ systems, we layout
a numerical recipe for computing quantum discord based on the Monte Carlo sampling of the
d- and d′-dimensional spaces. Our method does not search over the entire Hilber space, but it
does give us reasonably close results, as we tested the integrity of the algorithms with repetitive
trials of randomly generated density matrices with known analytical solutions.

3.1. Entropic discord

The estimation of entropic discord consists of two parts. One part is to calculate I(ρAB) (Eq.
(4)), and it is fairly trivial. Note that ρAB is in the basis of |i〉⊗ | j〉 or |i j〉, where i, j ∈ {0,1}.
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The other part is to find the supremum of the functional J(ρAB|{Bk}) (Eq. (6)). Equation (6)
can be expanded to a more explicit form [3],

J(ρAB) = sup
{Bk}

(S(ρA)−S(ρAB|{Bk})). (9)

The second term in the equation is what requires a numerical approach. Let us define the second
term of Eq. (9) as a function,

F(ρAB) = inf
{Bk}

S(ρAB|{Bk}). (10)

We are looking for the infimum of the functional because Eq. (9) has to be maximized.
A qubit can have outcomes of either |0〉 or |1〉. However, any rotational transformation of |0〉

or |1〉 is a valid outcome of the measurement as well. Hence, for this calculation, we need to
consider all the possible measurement basis.

We start with two orthogonal measurement bases Π0 and Π1,

Π0 =

(
1 0
0 0

)
, Π0 =

(
0 0
0 1

)
. (11)

By a simple rotational transformation V, we can generalize the measurement outcomes of {Bk}
as

V(θ ,φ) =
1√
2
(I− iâ†(θ ,φ)σ), (12)

Bi
k = V†

ΠiV, i ∈ {0,1}. (13)

Note that â is a unit vector in the Bloch sphere representation,

â(θ ,φ) =

 sinθ cosφ

sinθ sinφ

cosθ

 , (14)

where 0≤ θ ≤ π and 0≤ φ ≤ 2π . σ is a tensor of the Pauli matrices

σ =

 σ1
σ2
σ3

 , (15)

where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (16)

Using the above relations, we can deduce ρAB for a given set of measurements {Bk},

ρAB|{Bk} = ∑
i∈{0,1}

1
pi
(I⊗Bi

k)ρAB(I⊗Bi
k), (17)

where pi is given by pi = Tr{(I⊗ Bi
k)ρAB(I⊗ Bi

k)}. It is now obvious that the functional
S(ρAB|{Bk}) of Eq. (10) is a function of θ and φ , and we can numerically estimate the ex-
tremum by simply searching over the spherical space, 0≤ θ ≤ π and 0≤ φ ≤ 2π .
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3.2. Geometric discord

Geometric quantum discord can be calculated in a similar manner. First, one needs to define an
abtitrary zero quantum discord state for a given joint density matrix ρAB. For this, let us define
the reduced density matrix ρB given the measurement |i〉 of A, i∈ {0,1}, i.e. ρB||0〉A and ρB||1〉A ,

ρB||0〉A = TrA{
[(

1 0
0 0

)
⊗ I
]

ρAB}, (18)

ρB||1〉A = TrA{
[(

0 0
0 1

)
⊗ I
]

ρAB}. (19)

Then, the zero quantum discord state ρc
AB can be found by using the following equation:

ρ
c
AB = ∑

i∈{0,1}

(
V†

ΠiV
)
⊗ρB||i〉A . (20)

Using the relations described above, Eq. (7) can also be calculated by searching over the same
spherical space, 0≤ θ ≤ π and 0≤ φ ≤ 2π .

3.3. Discord estimation for arbitrary d⊗d′ quantum systems

It is relatively easy to calculate the amount of quantum discord of a two-qubit state. However,
for high dimensional qudits of d > 2 where d denotes a dimension of the quantum state, the
searching process might take a very long time because searching over the entire Hilbert space
of a qudit is computationally difficult. It is also very complicated to apply a simple searching
method; one might encounter multiple local minima for a given density matrix due to the non-
convex nature of calculation.

For a qudit system, one can define the generalized Bloch sphere using the generalized Gell-
Mann matrices, which are essentially the Pauli matrices equivalence of higher-dimensional
extensions [27]. For a qudit system of d = N, there are d2− 1 Gell-Mann matrices, and they
are the basis of the Lie algebra of SU(N). These basis can be classified into three groups:

i) d(d−1)
2 symmetric Gell-Mann matrices

Λ
jk
s = | j〉〈k|+ |k〉〈 j|,1≤ j < k ≤ d, (21)

ii) d(d−1)
2 antisymmetric Gell-Mann matrices

Λ
jk
a =−i| j〉〈k|+ i|k〉〈 j|,1≤ j < k ≤ d, (22)

iii) (d−1) diagonal Gell-Mann matrices

Λ
l
d =

√
2

l(l +1)

(
l

∑
j=1
| j〉〈 j|+ l|l +1〉〈l +1|

)
,1≤ l ≤ d−1. (23)

For simplicity we put all the Gell-Mann matrices in three groups into a linear order, i.e. Λi with
i ∈ {1,2, ...,d2− 1}. Using the Gell-Mann matrices, we can define an arbitrary unitary matrix
as follows:

V = ei∑k∈Perm({1,2,...,d2−1}) θkΛk , (24)

where θk are random variables analogous to angles of rotation in the spin rotation operators
and Perm({1,2, ...,d2− 1}) denotes any permutation of the set {1,2, ...,d2− 1}. The order of
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the set {1,2, ...,d2− 1} is not trivial because rotation operators in higher dimensions do not
have the associative property. Moreover, this method only generates special unitary matrices in
SU(N) which is a subgroup of unitary group U(N). Nonetheless, this is empirically sufficient
for the quantum discord estimation, and in fact, the approaches presented in the previous two
subsections deploy the same method.

This method of discord estimation can be further optimized by systematically varying the
angles. The optimization can be done by well-known computational methods, such as simulated
annealing or the Monte-Carlo methods with appropriate conditions. Using this method with a
sufficiently large number of samples can provide a good estimation of quantum discord much
quicker than searching over the entire space. The plots and figures of the papers are generated
with the methods described in this section.

4. Theory

4.1. Weak measurement and quantum measurement reversal protocol

Let us introduce the amplitude damping decoherence suppression protocol using the weak
measurement and the quantum measurement reversal [16, 17]. Our systems of interest are
two-level quantum systems (S) whose bases are |0〉S and |1〉S. Considering an environment (E)
is initially at |0〉E, we can model the amplitude damping decoherence [1],

|0〉S⊗|0〉E → |0〉S⊗|0〉E , (25)

|1〉S⊗|0〉E →
√

D̄|1〉S⊗|0〉E +
√

D|0〉S⊗|1〉E , (26)

where 0≤ D≤ 1 is the magnitude of the environmental decoherence and D̄≡ 1−D. Note that
amplitude-damping decoherence is a widely used model for various qubit systems [1]

The experiment considers a quantum communication scenario depicted in the following.
Alice prepares a two-qubit correlated state |Φ〉,

|Φ〉= α|00〉S +β |11〉S, (27)

where |α|2 + |β |2 = 1. This state is then delivered to Bob and Charlie through the quantum
channels of which amplitude-damping decoherences are characterized as D1 and D2. The ini-
tially correlated state |Φ〉 is then altered by the amplitude-damping decoherence, and the con-
sequent two-qubit quantum state ρd shared by Bob and Charlie is now given as [16]

ρd =


|α|2 +D1D2|β |2 0 0

√
D̄1D̄2αβ ∗

0 D1D̄2|β |2 0 0
0 0 D̄1D2|β |2 0√

D̄1D̄2α∗β 0 0 D̄1D̄2|β |2

 , (28)

where D̄k = 1−Dk, k ∈ {1,2}.
We can make it turn around by sequential operations of weak measurement (Mwk) and re-

versing measurement (Mrev), performed beforehand and afterward of decoherence, respectively.
These operations are non-unitary and defined as follows :

Mwk(p1, p2) =

(
1 0
0
√

1− p1

)
⊗
(

1 0
0
√

1− p2

)
, (29)

Mrev(pr1 , pr2) =

( √
1− pr1 0

0 1

)
⊗
( √

1− pr2 0
0 1

)
, (30)

where pi and pri are the strengths of the weak measurement and the reversing measurement
for Bob (i = 1) and Charlie (i = 2), respectively. We choose the strength for the reversing
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Fig. 1. Theoretical estimation of entropic discord as functions of decoherence and weak
measurement; Plots (a) and (b) are for the maximally correlated state |Φ〉 with |α| = |β |,
and plots (c) and (d) are for the non-maximally correlated state |Φ〉 with |α| < |β | with
α = 0.42. Entropic quantum discord under the influence of decoherence is shown in plots
(a) and (c), whereas the effect of the weak and reversing measurements is shown in plots
(b) and (d). Plots (b) and (d) are taken with D1 = 0.6 and D2 = 0.8.

measurement for protecting the amount of correlation of the joint state ρr to be pri = (1−
Di)pi + Di [16, 17]. After performing the weak and reversing measurements, the two-qubit
state ρr is now given as

ρr =
1
A

 |α|2 + p̄1 p̄2D1D2|β |2 0 0 αβ ∗

0 p̄1D1|β |2 0 0
0 0 p̄2D2|β |2 0

α∗β 0 0 |β |2

 , (31)

where A= 1+{p̄1D1(1+ p̄2D2)+ p̄2D2}|β |2 and p̄i ≡ 1− pi. Since we have the exact forms of
the density matrices, we can analyze various quantum correlations under the amplitude damping
decoherence with and without weak measurement and quantum measurement reversal protocol.
Note that the entanglement behaviour has been investigated in this scenario [16]. The results
showed that entanglement can be protected from the amplitude damping decoherence and even
entanglement sudden death phenomenon can be avoided.

4.2. Quantum discord protection

We examine how entropic discord (D(ρ)) and geometric discord (DG(ρ)) behave under differ-
ent decoherence, weak measurement, and the correspondingly chosen reversing measurement.
Note that since both ρd and ρr have forms of so called X-state, there exists an analytic solution
for quantum discord [22]. We have confirmed this analytic solution and our numerical methods
in Sec. III, provide the same results. For checking the intergrity of our code, we have searched
over tens of thousands randomly chosen density matrices, and it confirmed that our numerical
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Fig. 2. Experimental setup. The initial two-qubit state |Φ〉 is the two-photon polarization
state. Amplitude-damping decoherence (D) is implemented with the displaced Sagnac in-
terferometers. Brewster-angle glass plates (BPs) and half-wave plates (Hs) are employed
to perform weak mesurements (Mwk) and the reversing measurements (Mrev). Waveplates
(WPs), polarizers (Pol.), single photon detectors (SPDs), and a coincidence counting unit
(CCU) are used for quantum state tomography.

method provides sufficiently close estimations, compared to the analytic results. Figure 1 shows
the entropic quantum discord and the geometric quantum discord, respectively. For both cases,
two particular initial states of |α|= |β | and |α|= 0.42 < |β | are investigated. The plots clearly
show that decoherence affects the two qubits independently, and their correlations can be cir-
cumvented by exploiting weak measurement and quantum measurement reversal. However, it
is noteworthy that, for quantum discord, the amplitude damping decoherence does not cause
sudden death of correlation, unlike entanglement sudden death.

5. Experiment

Figure 2 shows the experimental setup with photonic polarization qubit implementation. First,
in order to generate a two-qubit entangled state, Eq. (27) with |α| = |β |, type-I frequency-
degenerate spontaneous parametric down-conversion has been implemented (not shown in
Fig. 2). 405 nm diode laser beam is pumped into a 6-mm-thick β -BaB2O4 crystal to gener-
ate 810 nm photon pairs. The down-converted photons are filtered with a set of interference
filters whose FWHM bandwidth is 5 nm.

There are three main parts to implement the protocol: weak measurement, amplitude damp-
ing decoherence, and reversing measurement. The weak and reversing measurements are im-
plemented with a set of Brewster angle glass plates (BPs) and half wave plates [28]. Note that
because the weak and reversing measurements can be mapped to the polarization dependent
losses, it is natural that the measurements can be implemented by BPs and half wave plates.

The amplitude damping decoherence is implemented with a displaced Sagnac interferome-
ter [17]. The interferometer couples the system’s polarization qubit to the environment’s path
qubit, whose mathematical model is provided in Eq.(25) and (26). The amount of loss to the
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Fig. 3. Experimental data for protecting entropic (top) and geometric (bottom) quantum
discord from decoherence using quantum weak measurement and quantum measurement
reversal. The blue curves are for the state |α|= |β |, whereas the red ones are for |α|= 0.42;
(a, c) As D increases, the amounts of entropic and geometric quantum discord gradually
decrease. (b, d) Even under the effect of strong decoherence (D = 0.6), we can reverse
the amounts of quantum discords between Bob and Charlie by performing Mwk(p) and
Mrev(p). The error bars represent the statistical error of ±1 standard deviation, and the
dashed lines in (a) and (b) represent the corresponding concurrence plots.

environment, or the strength of amplitude decoherence, D can be tuned by adjusting the angle
θ of the half wave plates such that D = sin2θ .

After the protocol implementation, we perform two-photon quantum state tomography with
a set of wave plates and polarizer to reconstruct the two-qubit density matrix. Note that, we
have used the same experimental data of Ref. [16] for direct comparison between entanglement
and quantum discord.

We first demonstrate the effect of decoherence D on the initial two qubit mixed state |Φ〉 =
α|00〉S +β |11〉S. For the given ρd , both entropic and geometric discord are evaluated. We take
data points for two different input state conditions (|α| = |β | and |α| < |β |(|α| = 0.42)) as a
function of decoherence D, and present in Fig. 3. The dashed lines are concurrence, the amount
of quantum entanglement. As observed in the figures, unless the strength of decoherence is at
its maximum, i.e. D = 1, both the entropic and geometric discords between Bob and Charlie do
not disappear. This shows that quantum discord could be a more robust resource of quantum
correlation than entanglement that can survive even in a severe environment.

We also test whether the amount of discord between Bob and Charlie can be protected by
weak measurement and quantum measurement reversal. Figure 3(b), (d) show the entropic and
geometric discords of the two-qubit state ρr, respectively. The reversing measurement parame-
ter pr = p(1−D)+D is chosen for a given weak measurement strength p. As shown in Fig. 3,
the experimental results show that the sequential operations of weak measurement and revers-
ing measurement can indeed protect quantum discord.

Note that the error bars for quantum discord are usually larger than those for concur-
rence [16]. This is an interesting result considering that both quantum discord and concurrence
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are derived from the same experimental data. This result strongly suggests that obtaining quan-
tum discord from a given density matrix is intrinsically noisier than performing concurrence
calculation. [29].

It is noteworthy to discuss the relation between the success probability of our scheme and
the amount of protected quantum discord. In general, the weak measurement and the reversing
measurement are lossy processes because they are not unitary [28, 30, 31]. Therefore, the suc-
cess probability decreases as the weak measurement strength p increases [16,17]. On the other
hand, the amount of protected quantum discord increases as p increases as shown in Fig. 3
(b) and (d). Therefore, we can notice that the success probability and the amount of protected
quantum discord are in a trade-off relation. In the asymptotic limit of p→ 1, quantum discord
can be distributed without degradation, but the success probability goes to zero. Note that a
similar trade-off relation and asymptotic limit can be found between the success probability
and concurrence [16].

6. Conclusion

We first provided numerical methods to find both entropic and geometric discords. By applying
the methods to the quantum correlation protection protocol, we successfully show that quantum
discord can be protected from decoherence by weak measurement and quantum measurement
reversal. The protocol described in this paper can be applied to other types of quantum system
beyond two-photon polarization qubits. We believe that this protocol is a compelling method
that can be used for effectively handling decoherence and distilling quantum correlations from
decohered quantum resources.

Acknowledgments

This work was supported by the ICT R&D programs of MSIP/IITP[10044559,2014-044-014-
002], the KIST Research Programs (2E25460, 2V04260, 2V04280), and the National Research
Foundation of Korea (Grant No. 2013R1A2A1A01006029).

#247444 Received 5 Aug 2015; revised 15 Sep 2015; accepted 16 Sep 2015; published 24 Sep 2015 
(C) 2015 OSA 5 Oct 2015 | Vol. 23, No. 20 | DOI:10.1364/OE.23.026012 | OPTICS EXPRESS 26022 




