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Abstract: We report a bright source of polarization-entangled photon
pairs using spontaneous parametric down-conversion (SPDC) in a 10 mm
long type-II PPKTP crystal pumped by a broadband multi-mode diode
laser with the coherence length of 330 μm. Ordinarily, the huge mismatch
between the pump coherence length and the PPKTP length would degrade
the polarization entanglement completely. By employing the universal
Bell-state synthesizer scheme, we remove the spectral/temporal distin-
guishability of the biphoton amplitudes entirely to recover high-visibility
and high-fidelity two-photon polarization entanglement. The pair detection
rates are 7,000 pairs/mW via single-mode fibers (with 99.2% fidelity) and
90,900 pairs/mW via multi-mode fibers (with 96.8% fidelity). We also an-
alyze the scheme theoretically to show the effect of broadband multi-mode
pumping on the phase matching condition of the type-II PPKTP.
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1. Introduction

A source of polarization-entangled photons is an essential resource in various quantum infor-
mation applications, including quantum computing, quantum teleportation, and quantum com-
munication. Although solid state and atomic systems have recently shown the feasibility of
entangled photon generation [1–3], spontaneous parametric down-conversion (SPDC) in a non-
linear optical crystal is by far the most versatile source of entangled photons due to comparably
high generation rates and wide varieties of photonic quantum states SPDC can generate with
high purity and fidelity.

SPDC generates photon pairs that are entangled in their spectral (and time) degrees of free-
dom and the degree of spectral/temporal entanglement depends on a variety of factors, includ-
ing the bandwidth and coherence of the pump laser, the crystal properties, and wavelengths
and polarizations of the photons. Various schemes based on SPDC have been proposed and
implemented to generate polarization-entangled photon pairs. The first scheme made use of
non-collinear type-I SPDC pumped by a monochromatic continuous-wave (cw) laser and a
non-polarizing beam splitter for quantum interference of the photon pairs [4]. The schemes for
generating polarization entangled photon pairs based on the monochromatic cw laser pumped
SPDC include non-collinear type-II SPDC [5,6], collinear type-II SPDC [7], two non-collinear
type-I SPDC [8,9], two collinear type-I SPDC [10–12], beamlike type-II SPDC [13–16], over-
lapping type-II emission cones [17], linear double pass scheme [18], etc.

It is important to mention that, to generate polarization-entangled photon pairs in the schemes
mentioned above, the pump coherence length should be sufficiently larger than the crystal
length. This requirement imposed a significant difficulty in generating polarization-entangled
photons with high-purity and high-flux when the pump is switched to ultrafast lasers as the
pulsed source of entangled photons have become essential for multi-photon based quantum
information experiments. When type-II SPDC is pumped by an ultrafast pump with a short co-
herence time (≈ 100 fs), the biphoton wavepackets responsible for polarization-entanglement
become spectrally and temporally distinguishable, causing detrimental reduction of quantum
interference [19–22]. This has forced experimentalists to use a very thin SPDC crystal and to
use a narrowband spectral filters for SPDC photons to generate polarization-entangled photons,
significantly reducing the useful photon flux [23].

The development of high-intensity pulsed source of polarization-entangled photons started
with the somewhat unstable Mach-Zehnder scheme [24–26] and led to the interferometrically
stable (but more difficult to achieve a high fidelity Bell state) cascaded crystal scheme [27–29].
In 2003, Kim et al. proposed and demonstrated the “universal Bell-state synthesizer” scheme
in which a high-fidelity Bell state can be achieved by quantum interference of pulsed type-II
SPDC at a polarizing beam splitter [30, 31]. The scheme is interferometrically stable and a
high-fidelity Bell state can be achieved without spectral filtering and temporal compensation.
The Sagnac scheme developed later operates on the same principle but the Bell state fidelity is
affected by the quality of the dual-wavelength optics (waveplates, mirrors, and beam splitters)
and the location of the nonlinear crystal within the loop [32–37] .

Experiments mentioned hitherto involved a monochromatic cw or an ultrafast pulse laser,
which are bulky and expensive. Recently, high-power blue-violate cw diode lasers have become
readily available at a very low cost but they have very short coherence lengths (several hundred
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μm) due to the multi-mode broadband nature [38]. Coherence properties of SPDC pumped by a
broadband cw multi-mode diode laser were studied [39] and it was recently reported that time-
bin entangled photon pairs can be generated by broadband multi-mode pumped SPDC [40]. It
is, however, a challenging problem to develop a bright source of polarization entangled photon
pairs based on SPDC pumped by a broadband multi-mode diode laser. To develop a high-flux
source, the use of a long periodically poled nonlinear crystal is essential. Since the pump has
an extremely short coherence length on the order of several hundred μm while the length of
the periodically poled nonlinear crystal is on the order of several cm, the biphoton wavepackets
responsible for polarization entanglement become distinguishable, causing severe degradation
of polarization entanglement [19, 20, 24]

In this paper, we report a bright source of polarization-entangled photon pairs using a 10 mm
long type-II PPKTP pumped by a broadband multi-mode cw diode laser with the coherence
length of 330 μm. Ordinarily, the huge mismatch between the pump coherence length and
the PPKTP length would cause spectral/temporal distinguishability of the biphoton amplitudes,
making it impossible to extract polarization entanglement. In this work, we adopt the “universal
Bell-state synthesizer” scheme [31] and show that high-fidelity Bell-states can be generated
even with such a huge mismatch between the pump coherence length and the crystal length. We
demonstrate a bright source of polarization entangled photon pairs at 812 nm with the detection
rate of 7,000 pairs/mW (via single-mode fibers and with the Bell-state fidelity of 99.2%) and
90,900 pairs/mW (via multi-mode fibers and with the Bell-state fidelity of 96.8%). We also
demonstrate the spectral/temporal properties of the SPDC photons in a two-photon quantum
interference experiment. Unlike typical type-II SPDC where the biphoton interference shows a
triangular dip pattern for cw pumping and a Gaussian pattern for ultrafast pumping [31,41,42],
the SPDC photons from the type-II PPKTP crystal exhibit the two-photon interference pattern
similar to that of type-I SPDC [42]. We provide a full theoretical and numerical analysis to
show that this interesting behavior is due to the interplay between the broadband cw multi-
mode pumping and the phase matching condition of the type-II PPKTP.

2. Experimental setup

The schematic of the experiment is shown in Fig. 1. For generating the SPDC photons, a 10
mm long type-II PPKTP crystal with the poling period of 10 μm was used. The PPKTP crystal
was pumped by a multi-mode cw diode laser operating at 406.2 nm with the full width at half
maximum (FWHM) bandwidth of roughly 0.5 nm. The spatial mode of the pump laser beam
was cleaned up by passing the beam through a 1 m long single-mode optical fiber (SM400,
Thorlabs). The pump laser was then focused at the PPKTP crystal and the measured pump
power at the input face of the PPKTP crystal was 2 mW.

The temperature of the PPKTP crystal was maintained at 86.8◦C for degenerate non-collinear
type-II SPDC, producing SPDC photons at the central wavelength of 812.4 nm with the FWHM
bandwidth of 8.7 nm (e-ray) and 5.8 nm (o-ray). The SPDC photons make an angle of ±1.3◦
with respect to the pump propagation direction. Note that, in the non-critical phase matching
as in this case, the e-ray and the o-ray rings of the type-II SPDC overlap to produce a single
ring, rather than two orthogonally polarized diverging rings observed in typical critical phase
matching [5, 13, 14].

The polarization state in the two path modes 1 and 2 in Fig. 1(a), right after the PPKTP
crystal, is in fact a mixed state,

1
2
(|H1,V2〉〈V2,H1|+ |V1,H2〉〈H2,V1|), (1)

where |V 〉 and |H〉 refer to the vertical and horizontal polarization state of a single photon,
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Fig. 1. Experimental schematic for the bright source of polarization-entangled photon pairs
based on the “universal Bell-state synthesizer” scheme by using a 10 mm type-II PPKTP
pumped by a broadband cw multi-mode diode laser. (a) Non-collinear type-II SPDC is used
so that the signal (e-ray) and the idler (o-ray) photons emerge from the PPKTP crystal in
overlapping concentric rings. Two conjugate path modes 1 and 2 (marked by small circles)
were selected. (b) The signal and idler photons, after making their polarization state iden-
tical by using a half-wave plate (HWP), are made to overlap at the polarizing beam splitter
(PBS) by a trombone prism (T) and collimated by collimation lenses (L1, L2). (c) The
detection part consists of single photon detectors (D1, D2) and polarization analyzers (P1,
P2).

respectively, and the subscript represents the path modes 1 and 2. This is due to the spec-
tral/temporal distinguishability of the biphoton wavepackets introduced by the huge mismatch
between the pump coherence length and the length of the PPKTP crystal [30]. The polarization
mixed state is then transformed into a Bell state by using the “universal Bell-state synthesizer”
scheme shown in Fig. 1(b) [31]. The SPDC photons in path modes 1 and 2 are selected and
the half-wave plate (HWP) introduced in one of the input ports of the polarizing beam split-
ter (PBS) flips the polarization state, |H2〉 ↔ |V2〉. The two photons are then overlapped at the
PBS by adjusting their arrival times with a trombone prism and collimated by using collima-
tion lenses. This scheme effectively erases the spectral/temporal distinguishability between the
biphoton amplitudes |H1,H2〉 and |V1,V2〉 by re-routing e-ray and o-ray photons to the same
output ports of the PBS regardless of their polarization states, so that the e-ray and the o-ray
photons are always detected at D1 and D2, respectively. The photonic polarization state at the
output of the PBS can then be written as a maximally entangled Bell state,

1√
2
(|H,H〉+ |V,V 〉). (2)

The polarization quantum state of the photon pair was then analyzed by two-photon quantum
state tomography using a set of polarizers (P1 and P2) and single-photon detectors (D1 and D2)
as shown in Fig. 1(c). No spectral filters were used before the detectors. The coincidence time
window of the detectors was set at 6 ns.
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3. Theoretical analysis

The density matrix ρ of the two-photon state generated via multi-mode diode laser pumped
spontaneous parametric down conversion (SPDC) can be described as follows [38];

ρ =
∫

dωpS (ωp)|ψ(ωp)〉〈ψ(ωp)|. (3)

Here, S (ωp) is the spectral power density of the pump that describes the weight of each spec-
tral mode ωp and can be written as [39, 40, 43]

S (ωp) =
∑N

n=−N S0 (ωp)δ (ωp −ωp0 −nΔωp)

∑N
n=−N S0 (ωp0 +nΔωp)

, (4)

where ωp0 is the central frequency of the pump, Δωp is the mode spacing, and n is the mode
number. S0 (ωp) is the overall spectral profile of the pump that is assumed to be Gaussian
centered at ωp0,

S0 (ωp)≡ exp
(
−(ωp −ωp0)

2/δωp
2
)
, (5)

with pump bandwidth δωp. |ψ(ωp)〉 is the state of the photon pair generated via type-II non-
collinear SPDC with a monochromatic pump laser of frequency ωp and can be written as

|ψ(ωp)〉 ∼
∫

dkodke

∫ L

0
dzeiΔzδ (ωo +ωe −ωp)

× [â†
1H(ωe)â

†
2V (ωo)+ â†

2H(ωe)â
†
1V (ωo)]|0〉,

(6)

where â†
1H(ω) and â†

1V (ω), respectively, are the creation operator for a horizontally and a ver-
tically polarized photon of frequency ω in mode 1 right after the crystal in Fig. 1. For mode 2,
â†

2H(ω) and â†
2V (ω) are defined similarly. Δ is the phase mismatch between the pump photon

and down-converted photons, and L is the length of the crystal. Note that, in the non-critical
phase matching as in this case, the e-ray and the o-ray rings of the type-II SPDC overlap to pro-
duce a single ring, rather than two orthogonally polarized diverging rings observed in typical
critical phase matching [5, 13, 14]. Due to the use of PPKTP in generating the SPDC photons,
the phase mismatch term is given as,

Δ = kp − ke − ko −2π/Λ, (7)

where kp, ke, and ko are the k-vector of pump, e-polarized and o-polarized photons within the
PPKTP medium, respectively. The poling period of the crystal is Λ.

The spectral properties of type-II SPDC photon pairs can then be described by expanding
the phase mismatch term Δ about the central frequencies of the pump Ωp, e-polarized Ωe, and
o-polarized Ωo photons. To the first order in frequency, we obtain

Δ = Δ0 − (ωp −Ωp)D+− 1
2
(ωo −ωe)D, (8)

where we set Ωp = ωp0 and
Δ0 = Kp −Ke −Ko −2π/Λ (9)

is the zeroth order phase mismatch term with Ki = ki(Ωi) with i = p,e and o. Under the ideal
condition Δ0 = 0 but in general this term is not zero even in the best circumstances. Other terms
in eq. (8) are defined as

D+ =

[
1

uo(Ωo)
+

1
uo(Ωe)

]
− 1

uo(Ωp)
, (10)
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and

D =
1

uo(Ωo)
− 1

ue(Ωe)
, (11)

where uo(ω) and ue(ω), respectively, are the group velocities of o-polarized and e-polarized
photons inside the crystal.

The coincidence count rate at the detectors D1 and D2 can be described as

Rc ∝
∫

dt1dt2 tr
[
ρE(−)

1 (t1)E
(−)
2 (t2)E

(+)
2 (t2)E

(+)
1 (t1)

]
, (12)

where

E(+)
1 (t1) =

1√
2

∫
dω[â1H(ω)+ eiωτ â2V (ω)]e−iωt1 (13)

and

E(+)
2 (t2) =

1√
2

∫
dω[â1V (ω)± eiωτ â2H(ω)]e−iωt2 (14)

are the positive frequency components of the quantized electric fields at D1 at time t1 and D2 at
time t2 [24], respectively. Here, τ = x/c where x is the optical path length difference between the

two paths in Fig. 1(b). The ± sign in E(+)
2 (t2) refer to the two orthogonal polarization projection

basis. When the polarization analyzer P2 in front of D2 is set at |D〉= 1√
2
(|H〉+ |V 〉), the + sign

should be chosen and, when P2 is set at |A〉= 1√
2
(|H〉− |V 〉), the − sign is chosen. Evaluating

the above equation leads to the coincidence count rate,

Rc = 1±T (τ), (15)

where the ± sign represents the two-photon polarization projection basis for P1 and P2: + for
(|D〉, |D〉) and− for (|D〉, |A〉). The term T (τ) responsible for two-photon quantum interference
is given as

T (τ) =
∫

dωpS (ωp)cos

[{
2D+

D
(ωp0 −ωp)+

2Δ0

D

}
τ
]

tri

(
2

πLD
τ
)
. (16)

Here, the triangular function is defined by

tri(x) = max(1− x,0) , (17)

where max(a,b) yields the largest of a and b.

4. Experimental results

First, we study the biphoton interference as a function of path length difference τ . The polar-
ization analyzers P1 and P2 are set at two orthogonal serttings (|D〉, |D〉) and (|D〉, |A〉). The
interferometric path length difference τ are then scanned to observe spectral/temporal proper-
ties of the biphoton states involved in the two-photon interference. The experimental results are
shown in Fig. 2. In Fig. 2(a), we show the experimental data when single-mode fiber coupled
detectors are used. The interference visibility calculated from the data is 0.978. When multi-
mode fiber coupled detectors are used, the visibility slightly dropped to 0.936 but more than
ninefold increase in the two-fold count rate is observed, see Fig. 2(b).

It is noteworthy to mention that the SPDC photons from type-II PPKTP pumped by a broad-
band multi-mode cw diode laser exhibit rather unique biphoton interference structure. It has
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Fig. 2. Experimental data showing high-visibility two-photon quantum interference when
(a) single-mode fiber coupled detectors are used and (b) multi-mode fiber coupled detectors
are used. The inset shows the settings of the polarization analyzers P1 and P2. The visibili-
ties are 0.978 for (a) and 0.936 for (b). The solid lines are curves due to Eq. (15), obtained
by summing up the effect of 50 most dominant modes of multi-mode diode laser with
0.015nm mode spacing. The best fitting is obtained when the PPKTP temperature is set
at 79.6◦C although the measured temperature is 86.8◦C. This discrepancy is due to sys-
tematic errors in the temperature measurement (as the location of the thermocouple in our
setup was a bit far from the PPKTP crystal).

long been known that monochromatic cw laser pumped type-II SPDC photons exhibit trian-
gular biphoton interference shape [31, 41, 42]. For mode-locked ultrafast laser pumped type-
II SPDC, the biphoton interference shape is rather close to a Gaussian [31]. In the case of
broadband multi-mode cw laser pumped type-II SPDC as in this case, the biphoton interfer-
ence shown in Fig. 2 exhibits damped oscillatory behaviors which resemble monochromatic
cw pumped type-I SPDC [42].

This hitherto unobserved effects can be explained by carefully studying Eq. (16), which
shows the effect of group velocity differences of the pump and SPDC photons to the overall
shape of the two-photon interference. Equation (16) contains two terms, one responsible for the
triangular biphoton interference shape and the other responsible for sinusoidal oscillation, both
as functions of the path length difference τ . As the triangular term is rather well known [31,41,
42], we focus on the cosine term in Eq. (16) which includes the effect of the 0th order phase
mismatch Δ0 and the broadband multi-mode nature of the cw pump laser. When τ is varied, the
biphoton interference is modulated due to the coefficient 2D+

D (ωp0 −ωp)+
2Δ0
D which shows

the effect of a particular frequency mode of the pump. As Eq. (16) contains summation over all
frequency modes in the pump and, for each frequency mode, the modulation period is slightly
different, the net result is the damped oscillatory behavior of the two-photon interference as
shown in Fig. 2. Note that the function tri

(
2

πLD τ
)
, which would give the triangular shape, turns

out to be much larger in width than the damped oscillatory shape due to the fact that, in our
case,

2D+

D
(ωp0 −ωp)+

2Δ0

D
� 2

πLD
. (18)

This is the complete opposite case of the monochromatic cw pumped type-II SPDC where only
the triangular shape two-photon interference structure appears. That is, the argument of the
cosine term in Eq. (16) becomes zero for the monochromatic cw pumped type-II SPDC.

We now consider the quality of Bell states generated using this scheme. To generate the
Bell state, we set the path length difference τ = 0 and we reconstruct the density matrix of
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Fig. 3. The reconstructed density matrix of the generated Bell state. The entangled state
with respect to 1√

2
(|H,H〉+ |V,V 〉) has fidelity 0.992 and 0.968 for photon pairs coupled

into (a) single-mode fibers and (b) multi-mode fibers for detection. Concurrence, which
quantifies the amount of two-qubit entanglement, is for (a) 0.983 and for (b) 0.937.

the two-photon polarization state by using quantum state tomography. The results are shown
in Fig. 3. As shown in Fig. 3, high fidelity Bell states are generated. Concurrence C , which
quantifies the amount of two-qubit entanglement, is calculated from the reconstructed density
matrix: C = 0.983 for Fig. 3(a) and C = 0.937 for Fig. 3(b).

The experimental results demonstrate an ultra-bright and high-fidelity source of polarization-
entangled photon pair by using the universal Bell state synthesizer scheme. By using commer-
cial Si-SPAD (Perkin Elmer SPDC-AQR) with the quantum efficiency of ∼50% at 810 nm, we
achieved the coincidence count rate of 7,000 pair ·mW−1 for single-mode fiber coupling and
90,900 pair ·mW−1 for multi-mode fiber coupling.

There indeed has been a remarkable progress in achieving a high-flux source of polarization
entangled photon pairs in recent years. To put our work into context, it is worth looking at
a few notable results in high-flux sources of entangled photon pairs. Steinlechner et al. has
demonstrated coincidence detection rates of 16 kHz (by using two 20 mm long type-0 PPKTP
and at 25 μW pump power) [12] and 11.8 kHz (by using a 11 mm long type-0 PPKTP and at
10.4 μW pump power) [18]. Here, however, the pump coherence length must be greater than the
crystal length to achieve high fidelity Bell states. The Sagnac scheme is more versatile and the
coincidence detection rate of 82 kHz (by using a 25 mm long type-II PPKTP and at 1 mW pump
power) has been achieved [34]. This approach however requires high quality dual-wavelength
optics for high fidelity Bell states. In our work, by adopting the Bell state synthesizer scheme,
we have shown that it is possible to achieve a stable, high flux, and high fidelity source of Bell
states albeit using a low cost diode pump laser and off-the-shelf optics.
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5. Conclusion

By using a low-cost diode laser emitting a broadband multimode cw laser beam with a short
coherence length (330 μm) and a 10 mm long type-II PPKTP crystal, we built a bright source
of Bell states. In the usual type-II SPDC, it is not possible to erase the temporal and spectral
distinguishabilities completely when the mismatch between the pump coherence length and
the length of the nonlinear crystal is big. We have adopted the universal Bell-state synthesizer
scheme to remove the spectral/temporal distinguishabilities completely, hence building a high
fidelity and high brightness source of Bell states. We have achieved the polarization entangled
photon pairs at 812 nm with the pair detection rate of 7,000 pairs/mW (via single-mode fibers)
and 90,900 pairs/mW (via multi-mode fibers). We have also demonstrated an unusual two-
photon interference experiment. Unlike typical type-II SPDC where the biphoton interference
shows a triangular dip pattern for cw pumping and a Gaussian pattern for ultrafast pumping,
the SPDC photons from the type-II PPKTP crystal exhibit the two-photon interference pattern
similar to that of type-I SPDC. We have provided a full theoretical and numerical analysis to
show that this interesting behavior is due to the interplay between the broadband cw multi-mode
pumping and the phase matching condition of the type-II PPKTP.
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