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The spatial and spectral properties of entangled photons from spontaneous parametric down-conversion
(SPDC) with a focused pump are investigated with theoretical analysis and numerical simulation. Here,
the spatial and spectral properties of down-converted photons are fully calculated without using the
transverse momentum conservation assumption. We have obtained the spatial and spectral properties of
SPDC photons under focused pumping in various SPDC configurations, including type-1, type-II for both
positive and negative uniaxial crystals. Our result not only helps to understand the effect of pump fo-
cusing in SPDC better but also can find use in application of SPDC in realizing quantum information
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1. Introduction

For decades, spontaneous parametric down-conversion, or
SPDC, has been an essential entangled photon source for quantum
optics and photonic quantum information. One of the reasons why
SPDC was used for many of the important scientific breakthroughs
in the field of quantum optics is its versatility. SPDC is capable of
producing entanglement in multiple degrees of freedom, including
polarization [1], frequency [2], path [3], and orbital angular mo-
mentum [4]. Also, SPDC is known to be controllable to a great
extent. Many degrees of freedom of SPDC photons can be prepared
and controlled by carefully designing the experimental schematic
and parameters, such as the choice of the non-linear crystals, in-
clination of the optic axis, spectral and spatial width of the pump
laser. In particular, the properties of pump laser, both spectral and
spatial, are important since they can rather be dynamically con-
trolled unlike other static parameters. The properties of entangled
photons from SPDC, including spectral and spatial properties [5-
10], can be engineered by utilizing pump properties such as the
pump spectrum [11-13] or the pump spatial profile [14-19]. Also,
it is known that the coupling efficiency of SPDC photons to a single
mode fiber can be optimized by properly adjusting the pump fo-
cusing condition [20-22]. The effect of pump focusing on the
properties of SPDC photons, thus, recently has been an interesting
issue for the application of SPDC in quantum optics and quantum
information.

There have been several notable studies that dealt with the
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relation between the pump beam's spatial divergence, i.e. the
pump focusing condition, and the properties of SPDC photons in
some specific SPDC configurations. For instance, the effect of pump
focusing on spectral properties of SPDC photons were studied for
type-II SPDC in a beta-barium borate (BBO) crystal [14] and for
type-1 SPDC in a lithium iodate (LilOs) crystal [15]. The spatial
profile of SPDC photons under the focused pumping is experi-
mentally studied for type-Il SPDC in a BBO crystal [17,18]. The
near-field intensity profiles of type-1 SPDC in focused pumping is
studied by using classical wave equations [19]. In Ref. [19], how-
ever, the walk-off which may give the asymmetry in SPDC spatial
profile is not included in the calculation. Although the previous
studies may explain the changes in spectral and spatial properties
due to the focused pump in some specific configurations, a more
systematic approach that gives generalized description and pre-
diction is still in need.

For the systematic description of SPDC with a focused pump,
we calculated the quantum state of photon pairs of SPDC without
using the transverse momentum conservation condition. The
conservation of transverse momentum comes from the assump-
tion that the interaction area on the crystal is very wide, typically
many orders wider than the scale of the wavelength, and the
pump intensity is nearly constant over this transverse region.
Under this condition, as we show in the theory section in detail,
the transverse integral can be written as

g - = - — —
Jer explicky, — ks = ki) T % 6(kos — ksu = ki) a
where E | are transverse momenta, j = p, s, i means pump, signal
and idler respectively. This is how the conservation of transverse
momentum has originated. When we are considering focused
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pumping, the effective interaction area becomes relatively small,
on the order of several tens of pm, and the pump intensity cannot
be simply regarded as constant over the transverse region. In the
focused pumping condition, in general, the conservation of
transverse momentum assumption cannot be applied. To in-
corporate pump focusing conditions in SPDC, therefore, we have
chosen to calculate the effect of pump focusing in SPDC without
assuming the conservation of transverse momentum [23,24]. Note
that it is also possible to decompose the state of the pump field
into plane waves, where each plane wave satisfies the momentum
conservation, for calculating the quantum state of SPDC [25-27].

In this paper, the spatial and spectral properties of entangled
photons from SPDC with a focused pump are investigated in detail
with theoretical analysis and numerical simulation. In the present
calculation, transverse momentum conservation assumption is not
used throughout the calculation so that it is possible to in-
corporate different pump focusing conditions. It can therefore
gives a precise quantitative description on the spatial and spectral
properties of SPDC with focused pump as well as the qualitative
description. We have obtained the spatial and spectral properties
of SPDC photons under focused pumping in various SPDC config-
urations, including type-I, type-Il for both positive and negative
uniaxial crystals. Our result not only helps understand the effect of
pump focusing in SPDC better but also can be useful in applying
SPDC to quantum information applications.

In Section 2, the properties of SPDC photons under focused
pumping is theoretically calculated. The spatial profile and the
spectral properties are numerically simulated and analyzed in
detail in Section 3, based on the two-photon amplitude calculated
in Section 2. By investigating the effect of pump focusing in var-
ious SPDC configurations, including type-I, type-II for both positive
and negative uniaxial crystals, it became possible to better un-
derstand the causes responsible for the pump focusing effects. The
paper is then summarized and concluded in Section 4.

2. Theory

The theoretical approach is based on a general SPDC scheme as
shown in Fig. 1. A pump photon that comes into the non-linear
crystal is annihilated and two SPDC photons are created. Then the
generated SPDC photons are measured jointly at the detectors D1
and D2. The crystal, such as BBO, is aligned so that the optic axis
lies in the plane made by the x axis and the pump propagation
direction (z axis). The pump beam is focused through a focusing
lens placed at a focal length ahead of the crystal. The crystal lies
within the Rayleigh range so the beam width is assumed to be
constant (wg). To obtain different focusing conditions, one can
change the focal length of the lens.

The relation between the wave vectors and the optic axis inside
the crystal are shown in Fig. 2. The crystal is assumed to be uni-

detector,

UV pump ‘ ’:‘
- joint
focusing measurement

lens

Fig. 1. A schematic of SPDC under focused pumping. The pump beam is focused by
a lens and enters a nonlinear crystal. The down-converted photons travel to the
detectors with collection masks and the coincidence between the two detectors is
observed. wy, is the beam width at the crystal, z, is the distance from the crystal to
the detector, z is the pump propagation direction, z' is the direction of SPDC
photons.
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Fig. 2. The geometry of the crystal and the wave vector in SPDC process. The optic
axis lies in the x — z plane and @ is the angle between the propagation direction and
optic axis.

axial for simplicity. Here, z is set as the propagation direction of
the pump beam, and the optic axis of the crystal is chosen to lie on
x — z plane making an angle ¥ with the z axis. A general wave
vector inside the crystal can be fully specified by two angles: yand
¢. Note that the photons polarized in X are called extraordinarily
polarized photons, and those polarized in § are called ordinarily
polarized photons. The refractive index for extraordinary photons
depends both on the frequency and the propagating angle,
ne(we, 6), whereas that of ordinary photons depends only on the
frequency, n, (w,). Here, w. and @, are frequencies of extraordinary
and ordinary photons, respectively.

In the interaction picture, the effective Hamiltonian of the SPDC
process can be written as [28],

H=co [T 7, (T, OEDEC +h.c., @

where the pump beam, E, (7, t), is relatively intense so that it can
be treated classically, and E{”, E{~ are quantized signal and idler
photons inside the non-linear optical crystal, which is character-
ized by the 2nd order susceptibility »@. The quantum state of
SPDC can be calculated using the first order perturbation theory.

1' oo
wy= - [ diro), 3)

where the vacuum contribution is dropped as it cannot be de-
tected in the photon counting experiment.

What is often measured in the experiment is the average co-
incidence counting rate over a time interval T, which is known as
9],

1 /7 T PES N E
RcchfU dTlfo dB [(OEES iy, @
where E{" and E{" denote the quantized electromagnetic fields at
the detectors (D1 and D2), t; and t; are the detection times at each
detectors. The two-photon amplitude, or probability amplitude, is
defined as,

Fa = (OIEVES ). )

The properties of generated photons can be studied by in-
vestigating the two-photon amplitude. In this section, we calcu-
lated the two-photon amplitude expression suitable for SPDC
under the focused pumping condition.

We start by assuming that the input face of the crystal (z=0) is
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parallel to the x — y plane and that the pump beam is a mono-
chromatic continuous wave. The pump field at the input face of
the crystal is assumed to have a Gaussian profile,

Ey(T,z=0,t=0)=&,exp( - ri/wd), 6)

where &, is a constant, r, is the transverse position vector, and wy
is the pump beam width. The pump beam inside the crystal can be
written as [29]:

- U
Ey(T, 2 t) = fdzka exp[ - iwpt] x expliky:z + ko TIEN(R) 7y

.
where k; is the z component of pump wave-vector and k;, is the

transverse component of pump wave-vector. E'p (E ) is the Fourier
transform of the pump field at the front face of the crystal which is
given as,

E‘p(E) = &, exp( — k3, wil4), (8)

where & is a constant. Here, it is non-trivial to simply integrate
Eq. (7), since k,; depends on transverse components of pump
wave-vector as,

kpe = [ 221, (o ra)z—kz—.k2
pz — c e\*m ¥Yp px Py (9)

where kj; are the wave vector components in i = x, y axis and 8, is
the angle between the optic axis and the pump direction as in
Fig. 2.

Note that in the paraxial approximation k,, can be approxi-
mated as [29]

ke 1 ko, [
kpzzKp l+apK——E(1+apC0t'i’) K_ + -,
p p (10)
where K, = wpnp(wp, ¥)/c is the magnitude of the pump wave
vector when it is parallel to the z axis, and a, = — 9y In(n, (wp, ¥))

is the walk-off angle of the extraordinary pump beam. Note that
for the ordinary pump beam, the walk-off angle vanishes as the
refractivity is independent of the angle ¥.

Under the paraxial approximation where Ik, /K,|<1, the above
expression can be approximated up to the first order as

kpz = Kp + apkpx. an

Substituting Eq. (11) into Eq. (7), the pump field equation is cal-
culated to be:

Ep(T, 1) » 8, expli(Kpz — wpt)] x fdkpx expli(apz + X)kpx]
exp( — k;xw§/4) X fdkpy exp(ikpyy)exp( — kﬁyw§/4)

2 2
= &R expli(Kpz — wpt)] exp[ - M]

w3

12)

Above equation indicates that the center of the beam is shifted
from x=0 to x= - q,z as the beam propagates through the
crystal in the z direction: pump walk-off.

In general, the propagation direction of SPDC photons is dif-
ferent from the pump direction. The reference frames defined for
the pump and the SPDC photons are shown in Fig. 3. Here, the
SPDC photons are assumed to be propagating in z’ direction, which
is fully defined by two angles (¢;, w;). The axis x and y’ are chosen
so that the optic axis lies on the x' — z’ plane. The refractive index
of an extraordinary photon depends on ¥}, where the subscript j
refer either the signal or the idler photons.

Now, the negative frequency component of the quantized SPDC
field can be represented in the primed reference frame:

Optic axis

Z :pump propagation direction
2’ : direction of the SPDC photon

Fig. 3. The reference frames of the pump beam (unprimed frames) and that of the
SPDC photons (primed frames). ¥’ and y' are selected such that the crystal's optic
axis lies in x' — z' plane. The subscript j represents signal or idler photons.

G fd3k; gial; expl — ik, T - ajt)] 13)

where &; is a constant, aj; is a creation operator of the photon with
wave vector kj. Therefore, by combining Eq. (12), Eq. (13) with Eq.
(2), the Hamiltonian can be re-written as,

Ho [dF [dks [doki explitkyz - wp)] x

2 2

Z+X =

EXP[—W]“LSGE'i exp[ — i(ks' T — wst)]
o

x expl - i(k; T — )] + h.c., (14)

and by using Eq. (3), the long interaction time assumption, the
quantum state of SPDC is calculated to be

) o fd3? fd3k5 fd3ki

a},.a;,6(wp — w5 — w;) x expli(Kyz — kT - k-7
exp[ _M}O)'
Wo (15)
where the §(w, — s — ;) term comes from the integral over time.
Let wus now calculate the two-photon amplitude
Az = (DE{PESPly). In the two-photon amplitude calculation, the
quantized field at the detectors EfY and E{* should be considered.
Note that, as shown in Fig. 1, the SPDC photons travel nearly col-
linearly to the detectors D; and D,, which are typically located at
the far-zones from the source. We assume a pinhole or a collection
mask before each detector, which reflects the finite detector size.
Considering the collection mask to be infinitesimal, the electric
field operator of the SPDC photon at the detector D1 can be written
as

— . ’ -
EN(T. )= [y aim expliChy T = omt)15 (ko). 16
where the subscript m refer to signal or idler, t; is the time at

which the photon arrive the detector D1 and a;, is the annihila-

_>l -
tion operator of the photon with momentum k,, at D1. In this
paraxial collection setting, the wave vector of SPDC photons in z’
direction can be written as,

k. = K., an

where K, is the magnitude of the wave vector when the photon
propagates exactly in the z’ direction. Consequently, the field that
arrives at detector D1, E{*, can be approximated to be,
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EDT, b« f dorm Qiem eXpliK, 2 — omt)]
= fdﬂ’m Ogm eXpl — ionTil, (18)

where z; is the distance from the crystal to the detector 1 and
T = t; — &/c. The field at the detector D2, ES", can also be calcu-
lated in the same manner.

The two-photon amplitude, ;= (OE{PESPly), can now be
estimated by using Eqs. (15) and (18). There is a commutation
relation between the creation and annihilation operators,
[Qerms a,jj] = 45(?,11 - T{;), which can be used in the integration. This
greatly reduces the complexity in calculating the two-photon
amplitude, which is given as

Az ox fdms fda),' fd3?

8(wp — w5 — w;) X expliKyz — K{z; — K{z{)]

exp[ @z + x)2 + y2

by ]xexp[—i(msﬁ+mfﬁ)],
Wo

(19
where z; ; are the propagation directions of signal and idler pho-
tons. By using the geometric identity,

Kizj = Kj sin w; Cos ¢; X + Kj sin W sin ¢;y +Kjcosy; z, 20

where the angles y;, #;, ¥ are defined in Fig. 3. The probability
amplitude #A;; then becomes,

A2 fdﬂ)g fd“’i fdxdydz 8(wp — s — wj) X eXp( — i[Axx + Ayy — Afz])

{ (apz + %)% + yz]
expl - ——————|,
wi

@1

where the unimportant phase component, exp[ — i(osTi + @i 12)), is
neglected and we define the phase mismatches A,, A4,, A.°, A, as,

Ay = K (w5, ¥%)Sin y; €oS ¢ + K| (wj, ¥;)Sin y; COS ¢;

4y = Ki (w5, ¥)sin y; sin ¢ + K{ (wi, ¥;)sin y; sin ¢;

A7 = Ky(wp, V) — K (w5, ¥)C0S y, — K] (w;, ¥;)COs y;

A; = A7 + apAy. (22)
The spatial integration in Eq. (21) can be separated into three

directions, x, y, and z. As the cross-sectional area of the crystal is

big enough to cover the interaction area, which is defined by the

pump beam width wy, we can simply take the transverse integral

range as infinity. Here we used the change of basis method by

defining % = x + apz instead of x. Since ap, is much smaller than

the cross-section of the crystal, the integration range of ¥ may be
regarded as infinity as well. This results in,

) 2
f dx exp[ - w]exp[ — 1A,X]
-0 Wy
) 2
= f d(apz + Xx) exp[ - w]
—c0 )

exp[ — iy {(apZ + X) — apz}]

) g2
= f dx exp{ - xz]exp[ — 1A (X — apz)]
— WO

, wia?
= explidyapz] exp{ - 0% ]
o 4 23)
Likewise the y component of integration becomes,
o 2 w2a2
f dy exp[ - y—z]exp[ —id,y] =exp| - —2|
-0 Wy 4 (24)

In the z direction, the crystal of length L lies between z=0 and

z=L. Considering the result in Eq. (23) together with Eq. (21), the
integration in the z direction becomes

L
f dz exp[i(4; + apdy)] = Lsinc(L4,[2)exp(ila,/2). 25)
0
Now we can calculate the two-photon amplitude expression by
inserting Eqs. (23)-(25) into Eq. (21). The two-photon amplitude is
calculated to be

|Apal o fdm_g fﬂ'm,‘ 8(wp — ws — o) x expl — w47 + A})/4] sinc(La, [2). (26)
There are six independent wvariables in Eq. (26):
Vo Po W @p @, Wo. Among them, first four variables,

¥ ¢ W @, aredetermined by the location of the detectors in the
angular plane. It will be discussed in detail in the following section
how to uniquely determine the variables with detector positions.
For the cw pump beam, @, defines the frequency of the signal
photon as well as that of the idler photon, due to the strong fre-
quency anti-correlation, &(wp — ws — w;). The last variable wy is
pump beam width, which determines the pump focusing condi-
tion; hence, it is the most relevant variable in our calculation. Note
that, throughout the calculation, the conservation of transverse
momentum conservation assumption, in other words,

5&:” - El - EL), has never been used.

3. Results and discussion

We now numerically simulate our result by using the two-
photon amplitude calculated in Eq. (26). The coincidence count is
simply the absolute square of two-photon amplitude |A;,1? in-
tegrated over detection time (Eq. (4)), which can typically be as-
sumed as infinity [9]. We used two different crystals with different
characters for simulation: BBO and Urea. BBO is a negative uni-
axial crystal and Urea is a positive uni-axial crystal, respectively.
The numerical simulations performed in this section are based on
the Sellmeier equations of BBO and Urea, which can be found in
Ref. [30,31]. In the simulation, the length of the crystal is assumed
to be 3 mm. Also, it is assumed that the pump beam is a mono-
chromatic continuous wave at 405 nm.

Let us describe how the spatial profile of SPDC photons are
obtained by the numerical simulation method. To see the spatial
profile in the angular plane, we have to define the angles in the
angular plane, 8, and 6,, and relate the angles with the angles in
the two-photon amplitude, y; and ¢;, where the subscript j refers
to signal s and idler i. See, Fig. 3. The angles 4, 6, are uniquely
defined from the geometry as,

_tang,
tan ¢; = tan @,

tan y M = [tar? 6, + tan? 6, 27)

where w}’"‘ = sin~1(nj(wj, ¥j)sin w;) denotes the angle of the de-
tector from z axis, seen outside the crystal. Then one can calculate
the angles ¥; and y; from 6, and 8, by employing the geometrical
identity,

COs ¥ = cos ¥ cosy; + sin ¥ + siny; cos ¢;. 28)

Hence, when two detector positions are determined in the angular
plane, we can estimate the corresponding four angle values inside
the crystal (y,, ¢.. w, ¢;) which are required for calculating two-
photon amplitude. Now, when the focusing condition is de-
termined (wp) and the signal, idler wavelengths are set, the de-
tection probability of SPDC can be obtained as |#A;,12. Note, in our
discussion, we assumed that the optic axis is aligned for the fre-
quency degenerate SPDC case, i.e. is = 4; = 49 = 810 nm. Also, for
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wo = 100 um

8, (deg.)

Fig. 4. Spatial profiles of non-collinear (¢, = 3 °) type-I SPDC under different pump focusing conditions. The SPDC is assumed to take place in (a) negative uni-axial crystal
(BBO), (b) positive uni-axial crystal (Urea). It is clearly seen that in both cases, the spatial pattern of SPDC becomes broader and asymmetric as the pump gets more tightly
focused. The broadening effect is asymmetric in the 6, direction, whereas it is symmetric in the 6, direction. Although the broadening direction looks identical in both cases,
by carefully investigating the two-photon amplitude, we know that the actual cause for each case is different. In negative uni-axial crystal (a), the pump walk-off is the main
reason for the asymmetry. However, in positive uni-axial crystal, SPDC photon's walk-off is the main reason for asymmetry.

simplicity, we assumed that a narrow bandpass Mfilter,
85 — Ag) = 8(4i — Ag), is located in front of the detectors. Finally,
we numerically integrate the two-photon amplitude as given in
Eq. (26) to calculate the detection probability of SPDC.

Let us now discuss the numerical simulation results. Fig. 4
(a) and (b) shows the spatial profile of type-I SPDC under different
pump focusing conditions, wy= 100 gm, 50 gm, 20 ym, in a ne-
gative uni-axial (BBO) and a positive uni-axial crystal (Urea), re-
spectively. Note, in the simulation, the optic axis is set to lie in +6,
direction. It is clearly observable that the spatial pattern of SPDC
becomes broader and asymmetric as the pump gets more tightly
focused. Note that the broadening effect is asymmetric in the 6,
direction, whereas it is symmetric in the 8, direction. Although the
broadening seems to be similar in both crystals, the reasons for
broadening are different from each other. To understand the
asymmetry, we now consider the two crystal choices separately.

Let us first look at the negative uni-axial crystal, BBO, see Fig. 4
(a). Type-I SPDC in BBO is converting one extraordinarily polarized
pump photon into two ordinarily polarized photons (e — o + o).
The pump beam has the walk-off in the -6, direction. Recall that K
and K{ in Eq. (22) do not have angular dependence as they are
ordinary photons. To probe where the asymmetry in case of ne-
gative uni-axial crystal originates, we intentionally changed the
sign of 6,. When 6, changes to -6, ¢); changes into z — ¢; whereas
y; do not change. The corresponding phase mismatches will
change as,

Ay - — Ay
4y — 4y
Ay = AP — apdy. 29

so that the sinc function in two-photon amplitude, Eq. (26),
changes to be

sinc(l4;/2) — sinc[L(4) — apAy)/2]. 30

Since the two-photon amplitude changes when we change the
sign of @,, there is no symmetry along 6, so the spatial profile
should be asymmetric as in Fig. 4(a). This asymmetric effect is
originated from the pump walk-off a,. Note that -6, direction is
more broadened than +6, direction. In negative uni-axial BBO
crystal, hence, the walk-off direction is the same as the direction
that the SPDC ring is more broadened.

Second, let us take a look at the positive uni-axial case, Fig. 4
(b). In a positive uni-axial crystal, Urea, one ordinary pump photon
is down-converted into two extraordinary SPDC photons
(0 — e + e). The pump beam do not have the walk-off, o, = 0, since
it is ordinary while the generated photons do have angular de-
pendence on the refractive index. The following phase mismatches
can be written as,

Ay = K (w5, ¥%)siny, cos ¢, + K/ (w;, ¥:)sin y; cos ¢;
4y = K (w5, ¥)sin y; sin ¢ + K/ (w;, ¥;)sin y; sin ¢;
4; = Kp(wp) — K (s, ¥)cos wy — Ki (wi, ¥i)COS y;. (€3 )]

Let us first check the symmetry of 8, direction by substituting —6,
for 8,. Since the refractive indices of signal and idler photons have
angle dependence, ie. Kj(wj, ¥) = w;n;j(w;, ¥j)/c, we also have to
consider the change of angle ¥; where j=s, i. According to Eq.
(27) and (28), the angle ¥; do not change under the sign change of
6,. The change of the phase mismatches are given as,
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Ay = Ay
4y, - =4y
A; = Ay, 32)

resulting in the unchanged two-photon amplitude. Therefore, the
spatial profile of type-I SPDC in a positive uni-axial crystal is
symmetric in &, direction just like that in a negative uni-axial
crystal.

Then, let us substitute —6, for &,. According to Egs. (27) and
(28), the angle responsible for the refractive index of SPDC pho-
tons, ¥}, changes with the relation,

¥ - cos*‘( cos ¥ cos y; + sin ¥ — siny; cos 45)-). (33)

The phase mismatches, Ay, ., becomes different for the change of
sign in #,, hence the two-photon amplitude is not symmetric in &,.
The asymmetry in two-photon amplitude implies that the spatial
profile along @, would be asymmetric. Just to give more intuition,

(a)

let us expand Kj as a function of ¥

Ki(wj, ¥) = K}[l + aj% - %(] + aj cot ¥)
i

K; (34)
where K; = wjn;(wj, ¥)/c is the magnitude of signal or idler wave
vector if it is parallel to the z axis and aj = - 9 In(n;j(w;, ¥)) is the

walk-off of the SPDC photons. If we only consider the first order in
ki /K,

Kj(wj, ¥) = K + ajkj.. (35)
When the sign changes in &,, then the walk-off component
changes sign as,

Kj(wj, ¥) = K - o Kix, (36)
giving the asymmetric spatial profile in &,. This gives a simple

analogue to the pump walk-off, which provides an intuitive way of
understanding asymmetric broadening of spatial profiles.

0 (deg.)

0 (deg.)

cveedendea

0, (deg.)

Fig. 5. Spatial profiles of non-collinear (3 °) type-1I SPDC under different pump focusing conditions with different crystals: (a) BBO, (b) Urea. Each grid is scaled to 2 degrees.
Here, it is shown that the pump focusing makes SPDC photons’ spatial profile broad asymmetrically. Here again, as in type-I case, the broadening effect looks identical in
(a) and (b). However, the situation is not as simple as in type-I. For type-II SPDC in negative uni-axial crystal (a), the pump walk-off and the SPDC photon's walk-off are both
present. In this case, the pump walk-off prevails, so the asymmetric direction is pump beam's walk-off direction. For type-II SPDC in positive uni-axial crystal (b), only SPDC

photons have walk-off, hence it is the only cause of the asymmetry.
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Fig. 6. The spectral width (FWHM) of down-converted photons as a function of
pump beam width. (a) The spectral width of the collinear and non-collinear (1.5 °,
3 °) Type-1 SPDC. (b) The spectral width of the collinear and non-collinear (1.5 ¢, 3 ©)
Type-II SPDC.

However, note that the actual numerical simulation must not ap-
proximate Kj as in Eq. (35), but rather all orders of Eq. (34) should
be considered. In non-collinear settings, the emission angles of
down-converted photons, i.e. k;,/Kj, can routinely be more than a
few degrees. Hence, we cannot simply ignore k;, by assuming that
ki |K;j<1. Also note that the walk-off direction in a positive uni-
axial Urea crystal is +6,, whereas the direction where the spatial
profile is more broadened is —@,. In positive uni-axial Urea crystal,
therefore, the walk-off direction is the opposite of the direction
that the SPDC ring is more broadened.

In Fig. 4(b), the change of spatial profile of type-I SPDC in a
positive uni-axial crystal (Urea) is shown. Similar to the negative
uni-axial case, Fig. 4(a), the broadening effect is symmetric in 6,
direction, but asymmetry appears in &,: the —8, direction is more
broadened than +6, direction. In the positive uni-axial crystal,
Urea, the walk-off of SPDC photons are responsible for asymmetric
broadening not the pump walk-off. It is noticeable that not only
the pump walk-off, but also the walk-off of SPDC photons are re-
sponsible for the asymmetric changes in spatial profile due to
pump focusing.

Let us now study the case for type-Il SPDC. In Fig. 5, spatial
profile of type-1I non-collinear SPDC under focused pumping is
demonstrated with a negative uni-axial (BBO) and with a positive

uni-axial crystal (Urea). The spatial profiles of SPDC are more
broadened as the pump becomes more focused, from wy = 100 pgm
to wg = 20 um. Here, asymmetry in spatial mode broadening is
clearly observable. Fig. 5(a) shows the changes in spatial profile of
type-1I SPDC in a negative uni-axial crystal, BBO. The pump photon
is extraordinary and the generated photons are an ordinary and an
extraordinary photon (e — e + 0). In this condition, the phase
mismatches are,

Ay = K (w5, ¥)sin y, cos ¢, + K] (wi)sin y; cos ¢;

4y = K (w5, ¥)sin y; sin ¢ + K/ (w;)sin y; sin ¢;

A7 = Ky(wp, ¥) — K (ws)cos y, — K/ (wj)cos y;

A; = A7 + apAy. 37

One can easily figure out that the two-photon amplitude is sym-
metric in 8, direction, but the asymmetry in 8, may not be clearly
understood since there are two components that walk off: pump
and one SPDC photon. From the numerical simulation, it turned
out that the pump walk-off prevails, so the spatial profile is more
broadened in —¢, direction, as in Fig. 4(a) case.

Then, let us take a look at the positive uni-axial crystal case in
Fig. 5(b). In type-Il SPDC in a positive uni-axial crystal, Urea, an
ordinary pump photon is down-converted into an ordinary and an
extraordinary photon (o0 — e + o). Note that the pump beam do
not have walk-off, and the signal photon is assumed to be extra-
ordinary while the idler is assumed to be ordinary. The phase
mismatches will be,

Ay = Ki (w5, ¥%)Sin g, €os ¢, + K (w;)sin y; CoS ¢,
Ay = K (w5, ¥)sin y; sin ¢ + K/ (w;)sin y; sin ¢;
4A; = Kp(wp) — Ki(ws, ¥)cos y, — Ki (w;)COS ;. (38)

The symmetry of the spatial profile in 8, direction can be easily
seen. Due to the walk-off of the signal photon, the spatial profile
becomes asymmetric in &, as shown in Fig. 5(b); -8 direction is
more broadened than +6,. Note that although only one of the
photons is the extraordinary photon which walks off, both of the
photon rings are broadened in a similar way.

So far, we have observed that the spatial profiles of SPDC
photons under focused pumping are asymmetric and broadened
than the original spatial profile in both positive and negative uni-
axial crystals. This asymmetric broadening effect can affect the
quality of photon pairs when using it in quantum interferometry
or quantum information [17].

We now investigate the spectrum of down-converted photons
under the influence of focused pumping as shown in Fig. 6. Here,
we assume the coincidence collection scheme as in Fig. 1 for
measuring the spectrum. Also, we used the Sellmeier equation of
the BBO crystal for the simulation. The optic axis is assumed to be
properly aligned to get collinear and non-collinear SPDC. Since we
assumed that the pump beam is cw coherent light, the frequency
of idler photon is uniquely determined by the signal photon:
wj=wp — ws. Also, if we assume a perfect monochromator,
8 (ws — wy), in the signal arm for spectrum measurement, the two-
photon amplitude becomes,

1A 5] fdws fdw,- 5(ws — wm)d(wp — w5 — w;)
x exp[ — Wi (@7 + A3)[4] sinc(L4; [2), 39)

where w,, is the set frequency of the monochromator. The posi-
tions of the detectors are assumed to be fixed at (6, 8,) = (0, 0) for
the collinear case, and (¢y, 8y) = (0, + 1.5 °), (0, £ 3.0 °) for the non-
collinear cases. The angular variables, y, ¢, w;, ¢;, are uniquely
determined for each case. Therefore, the spectrum can be calcu-
lated to be,
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- > 2
S(ws, Wp) ‘ﬁ]z(ws, wp — ws, 6, 6, W())‘ . (40)
Note that 5; = (fsx, O5y) and 5; = (0ix, Oy) are determined by the
detector positions. From Eq. (40), we can simulate the spectral
property of SPDC photons depending on the pump beam width
(wp). The full-width and half maximum (FWHM) is used as a
measure of spectral width.

In Fig. 6, the horizontal axis is the pump beam width, so when
the focusing becomes stronger, the beam width becomes smaller.
The vertical axis is the full width at half maximum (FWHM) of the
spectrum. Comparing Fig. 6(a) with (b), we can notice that the
spectrum of the type-I SPDC is much broader than that of type-II
SPDC. Also, the spectrum of type-I SPDC is relatively sensitive to
the focusing condition than the spectrum of type-II SPDC.

For collinear SPDC, the spectrum is not affected by the pump
focusing condition. This is because the photons propagating in
collinear direction has y; = 0 so that the phase mismatches in x
and y direction will be identical to zero, ie. A4,, =0, see
Eq. (22). The Gaussian function becomes unity, i.e.
exp[ - w ¢ + A3)/4]1 = 1, and the spectrum is solely determined
by the sinc function. For example, for type-I SPDC,

A2l o SinC[%[Kp((ap, ¥) — K (ws) — K{(cu,-)]]. @n
Hence, the pump focusing cannot affect the two-photon amplitude
for collinear case.

The spectrum for non-collinear SPDC shown in Fig. 6 is broa-
dened as the pump is more focused. As seen in Eq. (26), the two-
photon amplitude is determined by the Gaussian function and the
sinc function. Let us take a look at the Gaussian function,

exp[ — wi (i + a})/4). (42)

When the pump beam width, wy, is large the phase mismatches
Ayy should be close to 0 to have the significant probability of de-
tection, so the Gaussian function more tightly limits the frequency
spectrum. When the pump is more focused, i.e. when the pump
beam width wy becomes small, more non-zero 4,, are allowed so
that the limitation of the spectrum by the Gaussian function is
released accordingly. For type-1 SPDC, when the pump beam width
is very small, wy~ « 0, the spectrum becomes as broad as the
collinear case as shown in Fig. 6(a). This is because the Gaussian
function becomes unity in the limit wy — 0 and the sinc function
becomes,

sinc[%(Kp(wp, ) - Kl () - Kg(a;f)]]. )
Note that the collinear case and the non-collinear case are iden-
tical for type-I SPDC, which is shown as the meeting line near
wp = 0. However, unlike in type-I SPDC, in type-II SPDC, the
spectrum of non-collinear SPDC does not become identical to that
of collinear SPDC as wy — 0. In Fig. 5(b), it is clearly observable that
the lines (for collinear and for non-collinear SPDC) do not meet
near wp = 0. This is because in type-Il SPDC, the extraordinary
signal photon has angular dependence in its refractive index, so
the sinc function,

sinc[%(Kp(mp. ¥) - K (@5, %) - K,-'(m;-))]. s
cannot be the same with the collinear case. Also, note that when
the angle of detection in non-collinear SPDC is increased, the
spectrum becomes narrower, as shown in Fig. 6. Note that the
spectrum of SPDC in the positive uni-axial crystal (Urea), which is
not shown in Fig. 6, has similar response to the pump focusing as
the spectrum of the negative uni-axial crystal (BBO).

4. Conclusion

The spatial and spectral properties of entangled photons from
SPDC with a focused pump are studied with theoretical analysis
and numerical simulation, without invoking transverse mo-
mentum conservation assumption. Based on the two-photon am-
plitude expression calculated in Section 2, in which all properties
of photon pairs are reflected, we have obtained the spatial and
spectral properties of SPDC photons under focused pumping in
various SPDC configurations, including type-l, type-II for both
positive and negative uniaxial crystals. In particular, the transverse
walk-off of pump and SPDC photons are both responsible in
change of spatial profiles. Changes in the spectral properties in
response to pump focusing are also studied. This paper is to our
best knowledge the first study that describes the effect of pump
focusing in such generalized SPDC configurations. Our result not
only helps to understand the effect of pump focusing in SPDC
better but also can find use in application of SPDC in realizing
quantum information protocols.
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