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Abstract: Photon anti-bunching, measured via the Hanbury-Brown–Twiss experiment, is one
of the key signatures of quantum light and is tied to sub-Poissonian photon number statistics.
Recently, it has been reported that photon anti-bunching or conditional sub-Poissonian photon
number statistics can be obtained via second-order interference of mutually incoherent weak
lasers and heralding based on photon counting [Phys. Rev. A 92, 033855 (2015); Opt. Express
24, 19574 (2016); https://arxiv.org/abs/1601.08161]. Here, we report theoretical analysis on the
limits of manipulating conditional photon statistics via interference of weak lasers. It is shown
that conditional photon number statistics can become super-Poissonian in such a scheme. We,
however, demonstrate explicitly that it cannot become sub-Poissonian, i.e., photon anti-bunching
cannot be obtained in such a scheme. We point out that incorrect results can be obtained if one
does not properly account for seemingly negligible higher-order photon number expansions of
the coherent state.
© 2017 Optical Society of America
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1. Introduction

The normalized second-order correlation function g(2)(τ) plays an important role in quantum
optics by enabling to distinguish different kinds of light and is often measured via the Hanbury-
Brown-Twiss experiment [1–3]. Most importantly, it allows to distinguish different kinds of light.
The chaotic light and the coherent light are associated with g(2)(0) ≥ 1 and they can be described
well with the classical electromagnetic theory of light. Any light which exhibits g(2)(0) < 1,
i.e., photon anti-bunching, is considered quantum as quantization of the electromagnetic field
or the concept of photons is essential to describe its behaviors. As the coherent state exhibits
Poissonian photon number statistics, light which exhibits photon anti-bunching is tied to sub-
Poissonian photon number statistics [4]. There are indeed a wide variety of quantum light,
such as, the Fock states [5–7], multi-photon entangled states [8–12], squeezed states [13, 14],
macroscopic superposition states [15, 16], etc., and applications of quantum light includes
quantum communication [17], quantum computing [18], quantum metrology [19], etc.
A particular quantum state of light may be post-selected [8–12, 20, 21] or heralded [6, 7,

22–25]. In the heralding scheme, the statistical properties of the quantum state is conditioned
by the heralding signal. One of the earliest experiments on a localized single-photon state
relied on the heralding signal from a single-photon detection event of a two-photon state of
spontaneous parametric down-conversion [5]. In this example, the heralding signal causes the
conditional photon number statistics to be sub-Poissonian, exhibiting photon anti-bunching,
whereas unheralded photon number statistics would be that of the chaotic light, i.e., super-
Poissonian exhibiting photon bunching. In fact, quantum state heralding is a powerful tool
in preparing a complex quantum state of light and heralding schemes have been shown to
generate a variety of non-classical light states, including various entangled states [22–25], photon
added/subtracted states [26], etc. The idea of heralding has also been expanded to heralding
quantum processes such as, quantum storage of light [27], quantum gates and operations [28–30],
etc.

Recently, it has been reported that photon anti-bunching or conditional sub-Poissonian photon
number statistics can be obtained via second-order interference of mutually incoherent weak lasers
and heralding based on photon counting [31–33]. Even with weak lasers at the single-photon
regime, it is well-known that linear optical elements do not change the photon number statistics
and effects such as interference and phase randomization do not produce quantum light, although
they may produce chaotic light which exhibits photon bunching or super-bunching [36–39].
Then, the question becomes whether conventional single-photon detectors can indeed herald
a non-classical light state exhibiting photon anti-bunching from the classical input light. In
particular, what is the limit on manipulating conditional photon number statistics via interference
of weak lasers and heralding based on photon counting?

In this paper, we report the theoretical analysis on the limits of manipulating conditional photon
statistics via interference of weak lasers and heralding based on photon counting. It is shown
that conditional photon number statistics can become super-Poissonian in such a scheme. We
demonstrate explicitly however that, contrary to [31–33], it cannot become sub-Poissonian, i.e.,
photon anti-bunching cannot be obtained in such a scheme. Theoretical and numerical analyses
show that such incorrect results can be obtained if one does not properly account for seemingly
negligible higher-order photon number expansions of the coherent state even at the single-photon
regime.

2. Experimental scheme

Consider first the well-known Shih-Alley/Hong-Ou-Mandel experiment in which two single-
photons impinge on a symmetric beam splitter via the two different input ports [34, 35]. As
single-photons have no definite phase, no first-order interference is formed at the output of the
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Fig. 1. The proposed experimental setup for manipulating photon statistics via second-order
interference between two mutually incoherent weak lasers. AOM: acousto-optic modulator,
BS: beam splitter, Pol.: polarizer, D: single-photon detector, HBT: Hanbury-Brown–Twiss
interferometer. (a) This setup measures the second-order intensity cross-correlation Rcd(τ)
between modes c and d. (b) This setup measures the conditional second-order intensity
autocorrelation g(2)

C
(τ, τc). Electronic delays τ and τc are used to explore various interference

conditions.

beam splitter. If the two photons are distinguishable, they exit the beam splitter randomly. When
coincidence counts are measured between the two detectors placed at each output port of the beam
splitter, random coincidence events are measured. However, if the two single-photons are made to
be indistinguishable, second-order quantum interference causes the photons to coalescence. As a
result, the two photons are always found together at the same output port of the beam splitter,
causing the change of the photon number statistics. In this case, null coincidence counts are
measured due to the second-order quantum interference. The visibility, defined as the random
coincidence counts subtracted by the coincidence counts due to quantum interference normalized
to the random coincidence counts, in this case can reach the maximum value of one.

The experimental setup tomanipulate conditional photon statistics via second-order interference
of mutually incoherent weak lasers and heralding based on photon counting is inspired by the
above mentioned Shih-Alley/Hong-Ou-Mandel experiment. Instead of single-photon states at the
input of a symmetric beam splitter, we have two mutually incoherent weak lasers at the two input
ports, see Fig. 1. The setup is similar to the experiments in [31–33,39–41] but we make use of
the additional polarization degree of freedom to more clearly present the idea. Two beams of
lasers a and b are prepared by splitting a laser beam with a beam splitter (BS). The mutual phase
coherence between the two beams a and b is removed by using the acousto-optic modulators
(AOM1 and AOM2) that are driven by independent RF sources [40, 41]. This is essential to
ensure that there is no first-order interference between the two beams a and b as we overlap the
two beams at the second BS. This configuration corresponds to the Shih-Alley/Hong-Ou-Mandel
experiment but with two classical light beams [34, 35, 40, 41].

The second-order intensity correlation between the two output ports of the BS, c and d, can be
manipulated by changing the interference condition. Figure 1(a) shows a typical experimental
setup to measure the second-order intensity correlation Rcd(τ) between the modes c and d.
Here, τ denotes the time delay between two single-photon detection events at Dc and Dd. The
interference condition can be easily changed by the polarization states of beams. In order to
implement various interference conditions, the polarization states of the laser beams at a and b are
set to be horizontal (|H〉a) and vertical (|V〉b), respectively. Then, the interference condition can
be manipulated by changing the combinations of the polarization projection bases at the output
modes c and d by using the polarizers (Pol). When the projection basis {|D〉c, |D〉d}, where
|D〉 = 1√

2
(|H〉 + |V〉), is chosen for the polarizers, the second-order intensity correlation Rcd(0)

reaches the minimum value. For the projection basis {|A〉c, |D〉d}, where |A〉 = 1√
2
(|H〉 − |V〉),

the second-order intensity correlation Rcd(0) reaches the maximum value. We thus consider
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these bases in our analysis as they offer the theoretical maximum visibility of the second-order
interference [39–41].
Since the value of the second-order intensity correlation Rcd(τ > τcoh) = 1, where τcoh

is the coherence time of the input light, if the input light is two mutually incoherent lasers,
Rcd(0) = 0.5 for the projection basis {|D〉c, |D〉d}. Thus, the visibility of the second-order
classical interference in the Shih-Alley/Hong-Ou-Mandel setup is limited by V ≤ 0.5 [39–41].
This result nevertheless signals that photons are weakly bunched. On the other hand, if the
measurement basis {|A〉c, |D〉d} is chosen, Rcd(0) = 1.5 indicating that the photons tend to
distribute themselves in different spatial modes. This simple argument allows us to ask what the
limit would be for manipulating conditional photon statistics in a particular output mode c by
using photon counting at the other output mode d as the heralding signal. In particular, we are
interested in the conditional second-order intensity correlation function for mode c, g(2)

C
(τ, τc),

heralded by the photon counting signal at mode d. The relevant experimental setup to measure
g
(2)
C
(τ, τc) is shown in Fig. 1(b). Conditioned on the photon counting event at mode d, we use

the Hanbury-Brown–Twiss setup to measure g(2)
C
(τ, τc), the conditional second-order intensity

correlation function at mode c.

3. Conditional photon statistics

In this section, we show the state evolution following the experimental setup in Fig. 1. The input
to the first BS is a weak laser and its quantum state can be written in the Fock basis as,

|Ψ〉in = e−
α
2

∞∑
λ=0

α
λ
2
√
λ!
|λ〉, (1)

where |λ〉 denotes the λ-photon Fock state. The symmetric 50/50 beam splitter splits the incoming
beam into two, each beam having the mean photon number corresponding to α/2. The quantum
state of light at the output of the first BS is thus given by

|Ψ〉 = e−
α
4

∞∑
m=0

(α2 )
m
2

√
m!
|m〉a ⊗ e−

α
4

∞∑
n=0

(α2 )
n
2

√
n!
|n〉b

= e−
α
2

∞∑
m=0

∞∑
n=0

(α2 )
n+m

2

m!n!
(â†)m(b̂†)n |0〉 (2)

where |m〉a and |n〉b represent the m and n photon Fock states, respectively. The photon creation
operators at modes a and b are denoted as â† and b̂†, respectively.
At each output of the first BS, an acousto-optic modulator (AOM) is placed. The AOMs

are driven by independent and unsynchronized RF sources, making the incoming light beams
mutually incoherent. Therefore, after the AOMs, the state of each frequency mode can be
represented as

|Ψ(ωa, ωb)〉 = e−
α
2

∞∑
m,n=0

(α2 )
n+m

2

m!n!
{
eiγωa â†(ωa)

}m {
eiγωb b̂†(ωb)

}n |0〉, (3)

where ωa(ωb) and γωa (γωb
) are the frequency mode and the phase given by the AOM1 (AOM2)

at mode a (b), respectively. The state of light beams at the input mode a and b to the second BS
thus can be written as,

ρ =

∫
dωadωbF(ωa)F(ωb)|Ψ(ωa, ωb)〉〈Ψ(ωa, ωb)|, (4)
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where F(ωa) and F(ωb) are the frequency spectra of the light given by AOM1 and AOM2,
respectively. The quantum description of the light beams at the input modes a and b to the second
BS can then be fully written as,

ρ = e−α
∫

dωaF(ωa)
∞∑

m=0

( |α |2 )m

m!
|m〉a〈m| ⊗

∫
dωbF(ωb)

∞∑
n=0

( |α |2 )n

n!
|n〉b 〈n|. (5)

Note that the photons in mode a and b are horizontally and vertically polarized, respectively.
Since the BS input modes a and b are related to the output modes c and d according to the
following relation,

â†H (ωa) →
1
√

2
ĉ†H (ωa) +

i
√

2
d̂†H (ωa),

b̂†V (ωb) →
i
√

2
ĉ†V (ωb) +

1
√

2
d̂†V (ωb), (6)

the state of light at the output modes c and d of the second BS is given by,

ρcd = e−α
∫

dωadωbF(ωa)F(ωb)
∑
m,n

( |α |2 )n+m

(m!n!)2

(
1
2

)m+n
×

{
ĉ†H (ωa) + id̂†H (ωa)

}m {
iĉ†V (ωb) + d̂†V (ωb)

}n
|0〉〈0|{C.C.}, (7)

where {C.C.} denotes the complex conjugate.
Let us first consider the second-order intensity cross correlation, Rcd(τ), between modes c and

d, defined as

Rcd(τ) =
Tr

[
ρcdE (−)c (τ)E (−)d

(0)E (+)
d
(0)E (+)c (τ)

]
Tr

[
ρcdE (−)c (τ)E (+)c (τ)

]
Tr

[
ρcdE (−)

d
(0)E (+)

d
(0)

] , (8)

where E (+)c (t) = 1√
2π

∫
ĉ(ω)e−iωtdω is the field operator at detector Dc and ĉ(ω) is the photon

annihilation operator in mode c. As mentioned in section II, polarization projection precedes
photon detection and to ensure maximum interference visibility, the polarizer angles are set
at |D〉c or |A〉c . The polarizer is accounted for in the above equation by defining ĉ(ω) ≡
1√
2
(ĉH (ω) + ĉV (ω)) for the polarizer angle setting at |D〉c . For polarization projection at |A〉c ,

ĉ(ω) ≡ 1√
2
(ĉH (ω) − ĉV (ω)). E (+)

d
(t) and d̂(ω) are defined similarly. In our analysis, we consider

the polarization projection bases {|D〉c , |D〉d} and {|A〉c , |D〉d} as they offer the theoretical
maximum visibility of the second-order interference [39–41]. Note that Eq. (8) can be measured
by using the experimental setup shown in Fig. 1(a).

Let us now consider conditional photon statistics at mode c, heralded by photon detection event
at mode d. The relevant experimental setup is shown in Fig. 1(b). To investigate the conditional
second-order correlation g

(2)
C
(τ, τc), an Hanbury-Brown–Twiss setup is placed in mode c and is

triggered by the photon counting signal from detector Dd . Assuming the single-photon detectors
cannot resolve the number of photons, the second-order correlation at mode c heralded by photon
detection at mode d can be written as,

g
(2)
C
(τ, τc) =

∑∞
p=1 I(p)

d

∑∞
p=1 I(p)

def
(τ, τc)∑∞

p=1 I(p)
de
(τ)∑∞p=1 I(p)

d f
(τ + τc)

. (9)
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Here, I(p)
d

is the heralding probability caused by a p-photon detection at detector Dd . Since the
photon counting detectors are not photon number resolving, a heralding signal may be caused
either by a single-photon or by multiple photons. The heralding probability is given as,

I(p)
d
=

1
p!
Tr

[
ρcd{E (−)d

(0)}p{E (+)
d
(0)}p

]
. (10)

The two-fold coincidence probability I(p)
de

(I(p)
d f

) describes the coincidence events between the
detectors Dd and De (Dd and D f ), assuming that p-photon detection event occurs at detector
Dd . I(p)

de
and I(p)

d f
are given by,

I(p)
de
(τ) = 1

p!
Tr

[
ρcd{E (−)d

(0)}pE (−)e (τ)E (+)e (τ){E (+)d
(0)}p

]
,

I(p)
d f
(τ) = 1

p!
Tr

[
ρcd{E (−)d

(0)}pE (−)
f
(τ)E (+)

f
(τ){E (+)

d
(0)}p

]
.

Here, E (+)e (t) = 1√
2π

∫
ê(ω)e−iωtdω and E (+)

f
(t) = 1√

2π

∫
f̂ (ω)e−iωtdω are the field operators

at detector De and D f , respectively, with the annihilation operators ê(ω) = 1√
2
ĉ(ω) and

f̂ (ω) = i√
2
ĉ(ω).

The conditional coincidence count rate between De and D f , heralded by the photon detection
event at Dd , is given by the triple coincidence probability,

I(p)
def
(τ, τc) =

1
p!
Tr

[
ρcd{E (−)d

(0)}pE (−)e (τ)E (−)f
(τ + τc)E (+)f

(τ + τc)E (+)e (τ){E (+)d
(0)}p

]
. (11)

4. Analysis

Even at the single-photon regime of |α |2, the fact that the laser follows the Poisson photon number
statistics makes the analytical analysis difficult. Nevertheless, the conditional second-order
correlation g

(2)
C
(τ, τc) in Eq. (9) can be obtained analytically if we approximate the initial input

state of Eq. (1) up to a finite photon number p. In the following analysis, we consider the analytic
forms of g(2)

C
(τ, τc) truncated at the p-photon Fock state term. We consider the case of τc = 0

because this is where the quantum nature of the heralded photon states can be best tested. For
instance, the conditional second order correlation function truncated at p = 3 for an arbitrary α,
is given as,

g
(2)
C,p=3(τ, 0) =

(
265α2 + 456α + 384

)
eσ

2τ2
(
3eσ

2τ2 ∓ 2
)

3
(
(19α + 16)eσ2τ2 ∓ 2(5α + 4)

)2 ,

where σ denotes the bandwidth of the Gaussian-shaped frequency spectra of F(ωa) and F(ωb)
in Eq. (7). Here, the ∓ sign is related to the polarization projection measurement {|D〉c , |D〉d}
and {|A〉c , |D〉d}. Note that, while truncating at a low photon number p makes the analytic
forms simpler, it could significantly alter the conditional second order correlation g

(2)
C
(τ, 0). The

analytic forms of g(2)
C
(τ, 0) up to p = 10 are given in Appendix.

Figure 2 shows the numerical simulation of the intensity cross-correlation Rcd(τ) and the
conditional second-order correlation g

(2)
C
(τ, 0) for weak coherent states with |α | = 0.1 and

|α | = 1.2. To account for sufficiently large Fock state contributions, truncation is made at p = 10.
Also, we assumed that the frequency spectra F(ωa) and F(ωb) in Eq. (7) to be Gaussian with
the bandwidth of 15/2π MHz in full width at half maximum (FWHM), corresponding to the
coherence time τcoh ≈ 260 ns. The blue solid lines and red dashed lines correspond to projection
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Fig. 2. The intensity cross-correlation Rcd(τ) and the conditional second-order correlation
g
(2)
C
(τ, 0) for |α | = 0.1 and |α | = 1.2. Both Rcd(τ) and g

(2)
C
(τ, 0) are truncated at p = 10.

The coherence time τcoh ≈ 260 ns. The blue solid lines and red dashed lines correspond
to projection measurement bases {|D〉c, |D〉d}, and {|A〉c, |D〉d}, respectively. Note that
g
(2)
C
(τ, 0) is never below 1, meaning that the heralded photon states always remain classical.

measurement bases {|D〉c, |D〉d}, and {|A〉c, |D〉d}, respectively. The Rcd(τ) plots in Figs. 2(a)
and 2(b) show the typical Shih-Alley/Hong-Ou-Mandel like peaks and dips with the limited
visibility of V = 1/2 [34, 35, 40, 41]. The conditional second order correlation g(2)

C
(τ, 0) is shown

in Figs. 2(c) and 2(d). While it is evident that the conditional photon statistics can be manipulated,
even becoming super-bunched, i.e., g(2)

C
(τ, 0) > 2 as in Fig. 2(d), g(2)

C
(τ, 0) is never below 1,

meaning that the heralded photon states always remain classical.
In Fig. 3, we show the conditional second order correlation g

(2)
C
(τ, τc) for |α | = 0.1 and

|α | = 1.2 under different p-photon Fock state truncation. By looking at the asymptotic behaviors
of the second order correlation function, we can figure out whether truncation at the particular
p-photon Fock state can be justified. First, the g(2)

C
(τ, τc) values are calculated for the condition

τ = 0 and τc = 0, see Figs. 3(a) and 3(b). As noticed in Fig. 2, different polarization projections
{|D〉c , |D〉d} and {|A〉c , |D〉d} result in different conditional photon number statistics.
Now, when τ is larger than the coherence time of the light, τ > τcoh ≈ 260 ns, the conditional

second order correlations are the same regardless of the polarization projection choices. Figure 3(c)
shows g(2)

C
(τ, 0) at τ = 500 ns. The conditional second order correlation g

(2)
C
(τ > τcoh, 0) starts

out showing photon anti-bunching when the Fock state contributions are truncated at a low
photon number p. However, as more and more p-photon Fock state components are taken into
consideration, it reaches the asymptotic value of 1.5, which corresponds to the case when there is
no heralding signal [38].

What we find in Fig. 3 is that even for weak coherent state at the single-photon regime, |α | = 0.1,

                                                                                                     Vol. 25, No. 9 | 1 May 2017 | OPTICS EXPRESS 10617 



3 4 5 6 7 8 9 10
0.0

0.5

1.0

1.5

2.0

3 4 5 6 7 8 9 10
0.0

0.5

1.0

1.5

3 4 5 6 7 8 9 10
0.0

0.5

1.0

1.5

2.0

2.5

(b)

p-photon Fock state truncation

(a)

p-photon Fock state truncation

(c)

p-photon Fock state truncation

Fig. 3. The conditional second order correlation g
(2)
C
(0, 0) for |α | = 0.1 and |α | = 1.2 under

different p-photon Fock state truncation. For polarization projection (a) {|D〉c, |D〉d} and
(b) {|A〉c, |D〉d}. (c) g

(2)
C
(τ, 0) with τ = 500 ns, i.e., τ > τcoh. Even for weak coherent state

at the single-photon regime, |α | = 0.1, asymptotic behaviors are observed at relatively
large p = 4. For |α | = 1.2, asymptotic behaviors are not reached until p = 9, meaning that
truncation below p = 9 would result incorrect results. If Fock state truncation is made before
reaching the asymptotic value corresponding to a particular α, it looks as though conditional
photon anti-bunching were possible.

asymptotic behaviors are observed at relatively large p = 4. For |α | = 1.2, asymptotic behaviors
are not reached until p = 9, meaning that truncation below p = 9 would result incorrect results. If
Fock state truncation is made before reaching the asymptotic value corresponding to a particular
α, it looks as though conditional photon anti-bunching were possible [31–33]. Such conditional
photon anti-bunching from classical light, however, is purely due to improper handling of Fock
state truncation. It is necessary to properly account for even seemingly negligible higher-order
Fock state components of the coherent state.
Figure 4 shows the conditional second order correlation g

(2)
C
(τ, τc), truncated at the p = 10

photon Fock state, as functions of both τ and τc . The results with the {|D〉c , |D〉d} projection are
presented in Figs. 4(a) and 4(b), while Figs. 4(c) and 4(d) show the results with the {|A〉c , |D〉d}
projection. The black solid line in each plot corresponds to the case of τc = 0, which is depicted
in Fig. 2. It is clear that photon antibunching cannot be achieved by heralding if the input light is
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Fig. 4. The conditional second order correlation g
(2)
C
(τ, τc), truncated at the p = 10 photon

Fock state, as functions of both τ and τc . The black solid lines correspond to the case of
τc = 0, presented in Fig. 2. It is clear that photon antibunching cannot be achieved by
heralding if the input light is classical.

classical.
We also note that, when τ > τcoh, Figs. 2–4 show that g(2)

C
(τ, 0) = 1.5 which is larger than the

value for the coherent state. This increased value of the second order correlation is due to the
fact that the light in mode c is the result of interference between two mutually incoherent laser
beams [38].

5. Conclusion

Generation of nonclassical light states is important in quantum optics and inexpensive and simple
methods of generating various nonclassical light states would significantly advance the state of the
art in experimental quantum information research. In a recent attempt to tackle such a challenging
problem, it has been reported that photon anti-bunching or conditional sub-Poissonian photon
number statistics can be obtained via second-order interference of mutually incoherent weak
lasers and heralding based on photon counting [31–33]. Here, we have carried out detailed
theoretical and numerical analyses on the limit of manipulating conditional photon number
statistics via interference of weak lasers and heralding based on photon counting. We find
that conditional photon number statistics can become super-Poissonian in such a scheme. We
demonstrate explicitly however that it cannot become sub-Poissonian, i.e., photon anti-bunching
cannot be obtained in such a scheme. Theoretical and numerical analyses show that such incorrect
results can be obtained if one does not properly account for seemingly negligible higher-order
photon number expansions of the coherent state even at the single-photon regime.
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Additionally, our work shows that a light beam having super-Poissonian photon number
statistics and photon super-bunching may be easily generated by interfering multiple mutually
incoherent laser beams. Such a simple scheme for generating super-bunched light may be of use
in optical super-resolution and ghost imaging/interference experiments [42, 43].

Appendix : Solutions for g(2)
C
(τ, τc)

Here, we show the analytical forms of g(2)
C
(τ, 0) in Eq. (9), truncated at the p-photon Fock state,

for the projection basis {|D〉c, |D〉d}. The cases up to p = 10 are shown here.

g
(2)
C,p=4(τ, 0) =

(
9679α3 + 25440α2 + 43776α + 36864

)
e−2σ2τ2 [

−16(5α + 4)e3σ2τ2
+ 6(19α + 16)e4σ2τ2

+ α
] /

16
[ (

265α2 + 456α + 384
)
eσ

2τ2 − 3
(
49α2 + 80α + 64

) ]2
.

g
(2)
C,p=5(τ, 0) =

9
40

(
1741603α4 + 6194560α3 + 16281600α2 + 28016640α + 23592960

)
e−2σ2τ2

×
[
−4

(
49α2 + 80α + 64

)
e3σ2τ2

+
(
265α2 + 456α + 384

)
e4σ2τ2

+ α(5α + 4)
] /

[(
9679α3 + 25440α2 + 43776α + 36864

)
eσ

2τ2 − 4
(
1415α3 + 3528α2 + 5760α + 4608

) ]2
.

g
(2)
C,p=6(τ, 0) =

16
3

(
92917951α5 + 417984720α4 + 1486694400α3 + 3907584000α2 + 6723993600α

+5662310400
)

×e−2σ2τ2 [
3α

(
293α2 + 480α + 384

)
− 16

(
1415α3 + 3528α2 + 5760α + 4608

)
e3σ2τ2

+3
(
9679α3 + 25440α2 + 43776α + 36864

)
e4σ2τ2 ] /[

5
(
429031α4 + 1448960α3 + 3612672α2 + 5898240α + 4718592

)
−2

(
1741603α4 + 6194560α3 + 16281600α2 + 28016640α + 23592960

)
eσ

2τ2 ]2
.

g
(2)
C,p=7(τ, 0) =

5
14

(
5731580419α6 + 31220431536α5 + 140442865920α4 + 499529318400α3

+1312948224000α2 + 2259261849600α + 1902536294400
)
e−2σ2τ2 [

640α
(
350α3 + 879α2

+1440α + 1152
)
− 10

(
429031α4 + 1448960α3 + 3612672α2 + 5898240α + 4718592

)
e3σ2τ2

+3
(
1741603α4 + 6194560α3 + 16281600α2 + 28016640α + 23592960

)
e4σ2τ2 ] /[(

92917951α5 + 417984720α4 + 1486694400α3 + 3907584000α2 + 6723993600α

+5662310400
)
eσ

2τ2 − 6
(
10022813α5 + 42903100α4 + 144896000α3

+361267200α2 + 589824000α + 471859200
) ]2
.

g
(2)
C,p=8(τ, 0) = 18

(
50159199575α7 + 320968503464α6 + 1748344166016α5 + 7864800491520α4

+27973641830400α3 + 73525100544000α2 + 126518663577600α
+106542032486400

)
e−2σ2τ2 ×

[
25α

(
419671α4 + 1433600α3 + 3600384α2 + 5898240α

+4718592
)
− 16

(
10022813α5 + 42903100α4 + 144896000α3 + 361267200α2 + 589824000α

+471859200
)
e3σ2τ2

+ 2
(
92917951α5 + 417984720α4 + 1486694400α3 + 3907584000α2

+6723993600α + 5662310400
)
e4σ2τ2 ] /[

7
(
1110257215α6 + 5773140288α5 + 24712185600α4 + 83460096000α3 + 208089907200α2

+339738624000α + 271790899200
)
− 2

(
5731580419α6 + 31220431536α5 + 140442865920α4

+499529318400α3 + 1312948224000α2 + 2259261849600α + 1902536294400
)
eσ

2τ2 ]2
.
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g
(2)
C,p=9(τ, 0) =

7
6144

(
167649791255501α8 + 1232712488755200α7 + 7888121941131264α6

+42967306224009216α5 + 193285336879595520α4 + 687480221623910400α3

+1806952870969344000α2 + 3109322676083097600α + 2618376990385766400
)
e−2σ2τ2[

42α
(
28954439α5 + 125901300α4 + 430080000α3 + 1080115200α2

+1769472000α + 1415577600
)
− 14

(
1110257215α6 + 5773140288α5

+24712185600α4 + 83460096000α3 + 208089907200α2 + 339738624000α
+271790899200

)
e3σ2τ2

+ 3
(
5731580419α6 + 31220431536α5 + 140442865920α4

+499529318400α3 + 1312948224000α2 + 2259261849600α + 1902536294400
)
e4σ2τ2 ] /[(

50159199575α7 + 320968503464α6 + 1748344166016α5 + 7864800491520α4

+27973641830400α3 + 73525100544000α2 + 126518663577600α + 106542032486400
)
eσ

2τ2

−4
(
8870590892α7 + 54402603535α6 + 282883874112α5 + 1210897094400α4

+4089544704000α3 + 10196405452800α2 + 16647192576000α + 13317754060800
) ]2
.

g
(2)
C,p=10(τ, 0) =

256
45

(
43577990017810513α9 + 362123549111882160α8 + 2662658975711232000α7

+17038343392843530240α6 + 92809381443859906560α5 + 417496327659926323200α4

+1484957278707646464000α3 + 3903018201293783040000α2

+6716136980339490816000α + 5655694299233255424000
)
e−2σ2τ2

×
[
49α

(
1048007845α6 + 5559252288α5 + 24173049600α4 + 82575360000α3

+207382118400α2 + 339738624000α + 271790899200
)
− 64

(
8870590892α7

+54402603535α6 + 282883874112α5 + 1210897094400α4 + 4089544704000α3

+10196405452800α2 + 16647192576000α + 13317754060800
)
e3σ2τ2

+12
(
50159199575α7 + 320968503464α6 + 1748344166016α5 + 7864800491520α4

+27973641830400α3 + 73525100544000α2 + 126518663577600α
+106542032486400

)
e4σ2τ2 ] /[

3
(
82126151511535α8 + 581343044698112α7 + 3565329025269760α6

+18539077573804032α5 + 79357351978598400α4 + 268012401721344000α3

+668231627754700800α2 + 1090990412660736000α + 872792330128588800
)

−2
(
167649791255501α8 + 1232712488755200α7 + 7888121941131264α6

+42967306224009216α5 + 193285336879595520α4 + 687480221623910400α3

+1806952870969344000α2 + 3109322676083097600α + 2618376990385766400
)
eσ

2τ2 ]2
.

For the {|A〉c, |D〉d} projection, the results are similar to the ones shown above with some signs
flipped so that the ‘dip’ becomes ’peak’.
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