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Reversed interplay of quantum interference and which-way information in multiphoton
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We report experimental studies of quantum interference of multiphoton states impinging on a two-port balanced
beam splitter. When the distinguishability between the two input paths is increased, we observe a reduction
followed by a resurgence of the interference visibility in multiphoton coincidence detection. We ascribe this
unusual behavior to the competition among contributions from distinct number state components of the interfering
fields. Our results suggest that wave-particle duality gives rise to a wide range of largely unexplored phenomena
in multiparticle interference.
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I. INTRODUCTION

Quantum interference is one of the most fundamental
features of quantum mechanics, observed in a variety of
quantum systems [1–5]. A prototype example is the double-slit
experiment where the repeated incidence of a single particle
leaves wavelike interference fringes on a screen [1,6]. Perfect
interference is observed only if no information is available
about which path the particle has taken through the slits
[7], whereas partial path distinguishability gradually reduces
the fringe contrast [8–12] as a consequence of wave-particle
duality [13,14]. The visibility of interference is, thus, often
used to experimentally measure distinguishability associated
with single-particle [8–12] or two-particle interference [2,15].

Recent technological development on generating and
controlling multiple (more than two) photons has enabled
observations of new features of quantum interference: e.g.,
multiphoton bunching [16,17], the genuine multiphoton phase
[18,19], nonmonotonic quantum-to-classical transition [20],
and detection-dependent coherence [21,22]. Interestingly, as
interference of multiple photons cannot be simulated effi-
ciently in classical ways, a quantum simulator based on
multiphoton interference, boson sampling, has attracted a lot of
attention as a step forward to simulate complex mathematical
problems [23–26]. Furthermore, multiphoton interference is
the key element for advanced optical sensing [27–30] and
nonclassicality tests [31,32].

In contrast to single- or two-photon interference, we find
that multiphoton interference exhibits a highly nontrivial
behavior of the path distinguishability, even in the case
of linear splitting and recombination of individual photons
and, hence, of the corresponding annihilation and creation
operators: Multiphoton interference fringes may vanish and
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reappear under gradually increased path distinguishability.
We demonstrate this phenomenon with experiments on a
two-mode three-photon entangled state. We show theoret-
ically that the observed phenomena are not due to infor-
mation erasure [33,34], non-Markovian processes [35,36],
or a periodic decoherence [37,38] but due to a passage
between different numbers of interfering photons [39]. For
a separable multiphoton state, such different numbers of
interfering photons result in different distributions of photons
by interference [20], and for a multiphoton entangled state,
they result in interference fringes with different phases,
which gives rise to the observed reduction and resurgence of
interference fringes. Multiphoton entangled states in general
exhibit such a nontrivial relationship between interference
fringes and which-path distinguishability with the exception of
NOON states.

II. EXPERIMENTAL RESULTS

Figure 1(a) shows a schematic of our experimental setup
to observe multiphoton interference. This setup, illuminated
with the single-photon state,

|ψ1:0〉 = 1√
2

(|1,0〉a,b + |0,1〉a,b) (1)

is equivalent to the aforementioned double-slit experiment
[1,6], and single-photon detection at Dd , denoted as (0,1)
detection, shows interference fringes as the interferometer
phase θ is varied. When illuminated by a three-photon
entangled state,

|ψ2:1〉 = 1√
2

(|2,1〉a,b + |1,2〉a,b), (2)

we observe interference fringes in the coincidence detection
of two photons at Dc and a single photon at Dd , denoted as
(2,1) detection while scanning phase θ . In both the single- and
the three-photon experiments, the distinguishability between
paths a and b can be tuned by introducing a time-delay τ in
path b: As τ increases, the path distinguishability becomes
larger because the arrival time of a photon at the BS provides
which-path information [10,13,14,20].
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FIG. 1. (a) Schematic of an interferometer. BS is a nonpolarizing
balanced beam splitter. Dc and Dd detect m and n photons,
respectively, defining (m,n) detection. (b) Experimental setup. The
path modes a and b are realized by horizontal and vertical polarization
modes. Half-wave plates (HWP1,HWP2) are at 22.5◦. Quartz plates
Q1, Q2, Q3, and Q4 have different thicknesses of 7l, 4l, 2l, and
l (= 1.7 mm), respectively. The phase on the vertical polarization
is controlled by rotating a HWP between two quarter-wave plates at
45◦ (not shown). D1–D4 are single-photon detectors. HWP2 plays the
role of the BS in (a).

In the experiment, we implement the interferometer by
exploiting the horizontal and vertical polarization modes of
a photon as sketched in Fig. 1(b). To prepare the single-photon
state in Eq. (1) and the three-photon state in Eq. (2), we
use photon pairs generated by spontaneous parametric down-
conversion via type-I noncollinear phase matching [not shown
in Fig. 1(b)]: a femtosecond pulse laser (duration: 150 fs;
repetition rate: 95 MHz; central wavelength: 390 nm; average
power: 190 mW) pumps a 2-mm-thick β-BaB2O4 crystal
where each of the generated photons is filtered spectrally
by a narrow bandpass filter (full width at half maximum of
3 nm) and spatially filtered by coupling into a single-mode
fiber [S1 or S2 in Fig. 1(b)], which ensures indistinguishability
among the generated photons. Photons from S1 and S2 are
horizontally (H ) and vertically (V ) polarized, respectively,
and arrive simultaneously at a polarizing beam splitter
(PBS1). The quantum state of the photons after PBS1 is
(1 − |η|2)1/2 ∑∞

n=0 ηn|n,n〉H,V where we exploit the single-
pair-term |1,1〉H,V and the two-pair-term |2,2〉H,V by detecting
coincidence counts at D1 and D2 and D1–D4 (PerkinElmer
SPCM-AQRH-13), respectively. To avoid contributions from
higher-order photon-pair generation, we use low pump power
(190 mW), which gives |η|2 = 0.02. From the single-pair
term (the two-pair term), the single-photon state in Eq. (1)
[the three-photon state in Eq. (2)] is prepared by detecting
a single photon at D1 [41]. Time delays are implemented
on the vertical polarization mode by using four different-
thickness quartz plates (Q1–Q4), yielding time delays of
0, τ0 (= 110 fs), . . . ,7τ0. For each time delay, we record
single-photon interference fringes by detecting coincidence
counts at D1 and D2 as well as three-photon interference fringes
by detecting coincidence counts at D1–D4 while scanning the
interferometer phase θ .

For single-photon interference, we observe a gradual
reduction of the interference fringes in Figs. 2(a)–2(d)
with increased time delays, summarized in Fig. 2(e). The
straightforward and monotonic relation between the time delay
and the visibility agrees well with the wave-particle duality
relation [13,14]. In three-photon interference, however, we
encounter in Figs. 2(f)–2(i) a qualitatively different behavior
of the interference fringes, and, in particular, the three-photon
interference vanishes at τ = 220 fs [Fig. 2(h)] and reappears
(with a π -phase shift) at a further increased time delay
[Fig. 2(i)]. The behavior of the fringe visibility is summarized
in Fig. 2(j).

III. THEORETICAL ANALYSIS

To explain why the three-photon interference exhibits the
observed nontrivial behavior, we apply a multimode analysis
for the multiphoton state. The creation operator for a photon
occupying a Gaussian wave packet centered at time t can be
described as

A† = 1√
π�ω

∫
dω exp

(
− (ω − ω0)2

2 �ω2
+ iωt

)
A†

ω, (3)

where A†
ω is the creation operator of a photon with def-

inite frequency ω, and ω0 (= 2.41 × 1015 s−1) and �ω (=
3.99 × 1012 s−1) are the central frequency and the bandwidth,
respectively. The operator A†(τ ), creating a single photon in
the wave packet with a time-delay τ , has a similar expression,
and it can be expanded on the creation operator without
delay A†

0 and an orthogonal component, readily found by
Gram-Schmidt orthonormalization [20,21,39],

A†(τ ) = αA†
0 + βA†

1, (4)

whereA†
1 is the creation operator of the orthonormalized mode,

and

α = eiθ exp(−�ω2τ 2/4),

β = eiθ
√

1 − exp(−�ω2τ 2/2), (5)

with θ = ω0τ. |β|2(= 1 − |α|2) quantifies the path distin-
guishability [14,20], and it can be adjusted by the time delay τ :
As τ increases, |β|2 increases (consequently, |α|2 decreases),
which results in a transition of A†(τ ) from A†

0 to A†
1. Note that

other factors to increase the distinguishability (e.g., frequency,
polarization, and spatial mode mismatches) can also induce
the same transition [19].

Based on this decomposition, the single-photon state in
Eq. (1) exposed to a time-delay τ in path b of the interferometer
is described as

|ψ1:0(τ )〉 =
(

1√
2
|1,0〉a,b + α√

2
|0,1〉a,b

)
+ β√

2
|0,̃1〉a,b,

(6)

where a photon number without (with) a tilde denotes photons
created by A†

0 (A†
1). The first two terms interfere at the BS, but

the last term does not interfere with the first two as it describes
a photon occupying an orthogonal mode. The time delay then
induces a gradual transition from single-photon interference
(|α|2 = 1, |β|2 = 0) to no interference (|α|2 = 0, |β|2 = 1).
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FIG. 2. Interference at various time delays. Single-photon interference fringes by |1,0〉H,V + |0,1〉H,V are shown in (a)–(d), and the visibility
is summarized in (e). Three-photon interference fringes by |2,1〉H,V + |1,2〉H,V are shown in (f)–(i), and the visibility is summarized in (j). The
red squares and blue dots are experimental data. For the single-photon interference, coincidence counts on D1 and D2 are recorded, and for the
three-photon interference, coincidence counts on D1–D4 are recorded. Each of the data points in (a)–(d) and (f)–(i) is accumulated for 6600 s,
and the noise counts estimated by an additional photon-pair generation are subtracted [40]. The error bars represent one standard deviation.
The curves in (a)–(d) and (f)–(i) are sinusoidal fits of the experimental data. The red and blue curves in (e) and (j) are fits of the experimental
data to the theoretical model in Eqs. (8) and (12).

The detection probability at Dd is given by

P(0,1)(τ ) = 1
2 (1 − |α| cos θ ), (7)

which yields a visibility of

V(0,1)(τ ) = |α|. (8)

The detection probability is plotted in Fig. 3(a), which shows
a gradual degradation of interference fringes as expected from
the wave-particle duality relation [13,14].

The three-photon state in Eq. (2) is generated by the same
creation operators and acquires a more complicated form when
exposed to the time-delay τ ,

|ψ2:1(τ )〉 =
(

α√
2
|2,1〉a,b + α2

√
2
|1,2〉a,b

)
+

(
β√
2
|2,̃1〉a,b + αβ|1,1̃1〉a,b

)
+ β2

√
2
|1,̃2〉a,b.

(9)

Here, qualitatively different interference types coexist: The
first parentheses represent interference of three indistinguish-
able photons; the second represents interference of only two
indistinguishable photons (the third photon occupying the
orthogonal mode in path b); the last term does not lead to any

interference. The three terms have different magnitudes as the
time delay increases: Initially, |2,1〉a,b and |1,2〉a,b dominate,
then |1,1̃1〉a,b and |2,̃1〉a,b, and, finally |1,̃2〉a,b dominates the
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FIG. 3. Detection probabilities of input states versus a time delay.
The shaded areas represent interference fringes with a period of ω0

for (a), (b), and (d), 2ω0 for (c) and (e), and 4ω0 for (f).
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state, see Fig. 4. As a result, the time delay displays a transition
from three-photon interference over two-photon interference
to no interference. The (2,1) detection probability, plotted in
Fig. 3(b), is thus given by

P(2,1)(τ ) = P (three)(τ ) + P (two)(τ ) + P (no)(τ ), (10)

where

P (three)(τ ) = |α|2(|α|2 − 2|α| cos θ + 1)/16,

P (two)(τ ) = |β|2(4|α|2 + 4|α| cos θ + 3)/16, (11)

P (no)(τ ) = 3|β|4/16,

and the visibility becomes

V(2,1)(τ ) = |α(2 − 3|α|2)|
3 − 2|α|2 . (12)

We can now see that the vanishing and reappearance of
interference fringes shown in Fig. 3(b) are due to the π phase
difference [see Figs. 2(f)–2(i)] between the three-photon and
the two-photon interference fringes P (three)(τ ) and P (two)(τ ).
First the three-photon interference dominates, but for a critical
delay, the three- and two-photon interference signals add to
a constant, whereas for larger delay the two-photon interfer-
ence dominates until, eventually, the detection probability is
governed by the no-interference-type P (no)(τ ).

IV. DISCUSSION

As we have seen, multiphoton interference exhibits a
nontrivial dependence on the path distinguishability because
of the different numbers of interfering photons contributing to
the overall interference signal. Using our creation operators
and their expansion on orthonormal modes, we can account
for the time-delay τ at mode b for any linear combination of
input Fock states on the interferometer. Let us, for example,
consider the (N + M)-photon state |ψN :M〉 = (|N,M〉a,b +
|M,N〉a,b)/

√
2, where N > M . After the action of the time

delay, this state can be written as

|ψN :M (τ )〉 = 1√
2

M∑
k=0

√(
M

k

)
αM−kβk|N,(M − k)k̃〉a,b

+ 1√
2

N∑
l=0

√(
N

l

)
αN−lβl|M,(N − l)l̃〉a,b,

(13)

which leads to interference contributions from states with
total photon numbers in the “nontilded” modes created by
A†

0, ranging from N to N + M . Figures 3(c)–3(f) show
different examples of interference fringes as a function of the
time delay. For a four-photon state (|3,1〉a,b + |1,3〉a,b)/

√
2,

interference fringes by (2,2) detection is shown in Fig. 3(c).
At zero time delay, no interference fringe appears because
neither |3,1〉a,b nor |1,3〉a,b can be detected by (2,2) detec-
tion [21,42]; however, when the time delay is introduced,
interference fringes from three indistinguishable photons
emerge. Another example shown in Fig. 3(d) is a five-photon
state (|3,2〉a,b + |2,3〉a,b)/

√
2 measured by (4,1) detection.

Similar to the three-photon state in Eq. (2), the five-photon
state exhibits vanishing and reappearance of interference.
An eight-photon state (|5,3〉a,b + |3,5〉a,b)/

√
2 exhibits a

more complex behavior when measured by (6,2) detection:
Vanishing and reappearance of interference take place twice,
shown in Fig. 3(e). Remarkably, states |ψN :M〉 with M > 0 in
Figs. 3(c)–3(e) show a higher tolerance to the path distin-
guishability than the NOON state |ψN :0〉 in Fig. 3(f), which
always shows a simple and rapid reduction of the fringe
visibility, even though the former contains a larger or equal
number of photons than the latter.

V. CONCLUSION

The observed vanishing and reappearance of multiphoton
interference in the path distinguishability transition is due to
contributions to the overall interference signal from different
numbers of interfering photons, and the observation clearly
demonstrates that multiphoton interference exhibits a qual-
itatively different behavior from single-photon interference,
which is governed by the wave-particle duality [13,14]. Our
results, on one hand, provide a different characteristic of
multiphoton interference [39,43], and, on the other hand, they
may inspire investigation of a more foundational character, cf.
the different view on wave-particle duality in first and second
quantizations [13,14,44,45].

From a practical perspective, quantum technologies, such
as precision measurements [27–30] and quantum simulations
[24–26] increasingly are based on multiphoton interference
and entanglement. It is, hence, pertinent to understand how
these phenomena are affected by the nontrivial dependence on
distinguishability.
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