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Experimental characterization of quantum polarization of three-photon states
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We experimentally investigate various quantum polarization features of three-photon quantum states, including
product and entangled states with varying purity. The three-photon quantum states are categorized into six
classes based on the rotation symmetry of mean, variance, and skewness of the polarization distribution. The
representative three-photon quantum states in each category are prepared from double-pair emission from pulsed
spontaneous parametric down-conversion and quantum interferometry. We demonstrate that the three-photon
quantum states show interesting quantum polarization properties, such as maximum sum-uncertainty and hidden
polarizations.

DOI: 10.1103/PhysRevA.96.033840

I. INTRODUCTION

The polarization degree of freedom of single photons
has been widely used to explore quantum phenomena, since
polarization-entangled photon pairs can be prepared with high
fidelity and the polarization state is easy to manipulate with
linear optics. For example, polarization-entangled photons
have been utilized for a variety of fundamental tests of
quantum physics, including local hidden variables theories [1]
and epistemic models of the wave function [2]. In addition,
a plethora of quantum information technologies have been
experimentally implemented using photon polarization, such
as quantum key distribution [3], quantum dense coding [4],
quantum teleportation [5], and quantum computing [6].

The polarization state of light is conventionally described
through the use of Stokes parameters that can be represented
as a polarization direction and a degree of polarization on
the Poincaré sphere [7]. Since the Stokes parameters show
only the averaged, “classical” features, they are not sufficient
to describe the quantum polarization features fully. For
instance, there exists “classically” unpolarized light which
has nonisotropic second-order polarization, thus making the
state polarized [8]. This example highlights the existence of
hidden polarization features and the importance of polarization
fluctuations. Up to now, various quantum states have been
studied, such as squeezed polarization states [9,10] and
entangled photon states [11]. In addition, efficient polarization
tomography methods have been suggested [12–15].

In this paper, we experimentally investigate various quan-
tum polarization features of three-photon quantum states,
including product and entangled states with varying purity.
The studied three-photon states are isomorphic to the states
of a composite system consisting of three spin-1/2 particles
with the bosonic characteristic, that is, the symmetric Hilbert
subspace. To fully describe the properties of the states, up to
the third-order Stokes parameters are necessary and sufficient,
since the fourth- and higher-order polarization moments
contain no additional information. Thus, the Stokes parameter
characterization is an alternative representation to the usual
density matrix representation of any polarization state.

To explain the relation between conventional tomography
of multimode states and our method, it is helpful to observe
that our method assumes two-mode states where all particles

are measured locally in a single spatial mode. Therefore,
our case is different from the case which allows, or even
requires, separate measurements of each “particle” or qudit
in a multimode state. As an example, take a three-qubit state
space spanned by the eight vectors |0,0,0〉, |0,0,1〉, . . ., |1,1,1〉.
This space is mathematically isomorphic to the two-mode,
seven-photon polarization state space spanned by the eight
vectors |0,7〉, |1,6〉, . . ., |7,0〉. In principle, any measurement
or projection in one space has an equivalent measurement
in the other space, but physically such measurements or
projections are very different. In the three-qubit space, a
natural operation is the measurement of or tracing over one
qubit, reducing the space of the remaining two-qubit state
to dimension four. This is a very unnatural measurement
for a seven-photon polarization state. Likewise, the extreme
superposition (|0,0,0〉 + |1,1,1〉)/√2, that is a GHZ state,
has very different properties and applications than the state
(|7,0〉 + |0,7〉)/√2, which is a NOON state [16–18].

A consequence is that tomography through measurement of
correlations between local measurements of qubits or qudits
has no natural corresponding correlation measurement scheme
for polarization states in composite Hilbert space dimensions.
In a polarization space of prime dimension, such as a two-mode
four-photon state (spanning five dimensions), there is simply
no equivalent multimode space since 5 is a prime.

The central moments of the Stokes operator are also useful
to describe the polarization distribution on the Poincaré sphere
with Gaussian approximation [14]. The mean, variance, and
skewness represent the first-, second-, and third-order central
moments, respectively. Through their central moments, all
three-photon quantum states are categorized into six different
classes according to Table I based on their rotation invariance
(on the Poincaré sphere) of their the mean, variance, and
skewness. In this work, six class-representative three-photon
quantum states are experimentally prepared and measured to
confirm the predicted polarization properties.

II. THEORY

The Stokes parameters consist of the total intensity S0

and the three elements of Stokes vector �S = (S1,S2,S3)
which represent complementary polarization directions on
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TABLE I. Classification and examples of three-photon quantum
polarization based on SU(2) rotation invariance of mean 〈Ŝn〉,
variance 〈�̂2

n〉, and skewness 〈�̂3
n〉 [14]. The symbol O indicates

rotation invariance of the particular order of quantum polarization.

Rotation invariancea

〈Ŝn〉 〈�̂2
n〉 〈�̂3

n〉 Representative state in each classb

O O O Î/4

O O X 1
3 |3,0〉〈3,0| + 1

2 |1,2〉〈1,2| + 1
6 |0,3〉〈0,3|

O X O 1
2 (|3,0〉〈3,0| + |0,3〉〈0,3|)

O X X 1√
2
(|3,0〉 − i|0,3〉)

X O X 19
36 |3,0〉〈3,0| + 15

36 |1,2〉〈1,2| + 1
18 |0,3〉〈0,3|

X X X |3,0〉
aFor three-photon polarization states, six classes are physically
possible among eight possibilities.
bFock states in horizontal and vertical polarization mode.

the Poincaré (or Bloch) sphere. The values of (S1,S2,S3)
are obtained from intensity differences between orthogonal
polarizations: diagonal and antidiagonal, right and left circular,
and horizontal and vertical polarizations, respectively. By
substituting the bosonic number operator for intensity, the
Stokes operators can be well defined and they give quantized
values of the Stokes parameters. The operators are expressed
as [8]

Ŝ0 = â
†
H âH + â

†
V âV , Ŝ1 = âH â

†
V + â

†
H âV ,

(1)
Ŝ2 = i(âH â

†
V − â

†
H âV ), Ŝ3 = â

†
H âH − â

†
V âV ,

where âH (âV ) is the annihilation operator for the horizontal
(vertical) polarization mode. Their commutation relationships
can be derived from the bosonic commutation relations
between annihilation operators:

[Ŝ0,Ŝj ] = 0, (2a)

[Ŝj ,Ŝk] = i2εjkl Ŝl , j,k,l ∈ {1,2,3}, (2b)

where εjkl is the Levi-Civita tensor symbol.
The physical properties of the Stokes operators are implied

by the commutation relations. As indicated by Eq. (2a), the
commutation between the total photon number operator Ŝ0

and all other Stokes operators Ŝj indicates that the Stokes
parameters and photon number can be measured independently
without mutual disturbance. This allows measurements of
the Stokes parameters for specific photon-number states with
photon-number resolving detectors. This also implies that any
moment of the Stokes operators Ŝ1, Ŝ2, and Ŝ3 can be measured
in a similar manner.

Moreover, Eq. (2b) indicates that some Stokes parameters
must be uncertain, leading to the following inequalities:

√
〈�̂2

j 〉
√

〈�̂2
k〉 �

∣∣εjkl〈Ŝl〉
∣∣, j,k,l ∈ {1,2,3}, (3a)

2〈Ŝ0〉 � 〈�̂2
1〉 + 〈�̂2

2〉 + 〈�̂2
3〉 � 〈Ŝ0〉(〈Ŝ0〉 + 2), (3b)

where �j ≡ Ŝj − 〈Ŝj 〉 is the central moment of the Stokes
operator j . The existence of a photonic quantum state with

FIG. 1. Experimental scheme for generation and measurement
of three-photon states. Two pairs of SPDC photons are sent to
an interferometer through single-mode fibers (SMFs) after passing
3-nm bandwidth interference filters (IFs). In the state preparation
interferometer, the target states are prepared with a polarizing beam
splitter (PBS), a partially polarizing beam splitter (PPBS), half-
and quarter-wave plates (HWP, QWP), and a linear polarizer (LP).
Conditioned on the detection of a single photon at detector D1,
three photons are prepared in mode b in a particular quantum state
set by QWP1, HWP2, and LP. Fourfold coincidence measurements
with detectors D1, D2, D3, and D4 for 16 polarization projection
measurements allow quantum state tomography for the heralded
three-photon states.

hidden polarization, i.e., high-order central moments may
have nonzero values even though the state may be first-

order unpolarized, 〈 �̂S〉 = 0, is implied in Eq. (3a). Note that
Eq. (3b) gives boundaries of the sum of the second-order
central moments. For three-photon quantum states, the sum
uncertainty is bounded between 6 and 15.

The notion of Stokes operators can be generalized by
defining

Ŝn = (Ŝ1,Ŝ2,Ŝ3) · n, (4)

where n is a unit vector on the Poincaré sphere. The operator
Ŝn assesses the polarization state of the photonic quantum
state in the direction n. It follows trivially that one can define
polarization of order m in direction n as 〈�m

n 〉, where �n ≡
Ŝn − 〈Ŝn〉.

III. EXPERIMENT

To confirm the quantum polarization features of three-
photon quantum states experimentally, six representative
three-photon quantum states are prepared, as shown in Table I.
The three-photon states are generated from the double-pair
emission of femtosecond-pulse-pumped spontaneous para-
metric down-conversion (SPDC), see Fig. 1 [17,18]. The
pump pulse is derived from a frequency-doubled mode-locked
Ti:sapphire laser and has a central wavelength of 390 nm, a
pulse duration of 140 fs, and a repetition rate of 80 MHz. The
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FIG. 2. The simulated joint spectra of (a) SPDC photons,
(b) interference filters with 3-nm FWHM bandwidth, and (c) SPDC
photons filtered with the interference filters. The simulated joint
spectrum in (c) shows that the spectral correlation between the
photon pair is well eliminated by the interference filters. (d) The
Shih-Alley/Hong-Ou-Mandel interference dip has the visibility of
95.0% (99.6% after multiphoton noise subtraction) at 260-mW pump
power, a clear experimental indication that spectral distinguishability
between the SPDC photons has been well eliminated by the
interference filters. The red solid line is the Gaussian fit to the data.
The blue solid line is the linear fit to the calculated multiphoton noise.

SPDC photons, generated from a type-I beta barium borate
(BBO) crystal, have a central wavelength of 780 nm and
propagate noncollinearly with the pump laser.

To prepare a heralded three-photon quantum state via
interference using the scheme in Fig. 1, it is essential that
the inherent frequency correlation between the SPDC photon
pair be eliminated [19]. In our work, we ensure that this
condition is satisfied by using a 0.6-mm-thick type-I BBO
crystal, generating broadband SPDC photons, and by filtering
the SPDC photons with interference filters (IF) with FWHM
of 3 nm. The calculated spectral properties of the unfiltered
SPDC photons are shown in Fig. 2(a). It is clear that the
SPDC photons from a 0.6-mm-thick type-I BBO crystal have
a very broadband emission and show a very strong spectral
correlation between the pair. When the SPDC photons are
filtered with the 3-nm interference filters [see Fig. 2(b)], the
resulting SPDC photons have almost no spectral correlations
[see Fig. 2(c)].

The noncollinear, double-pair SPDC photons are combined
into a single spatial mode by a polarizing beam splitter
(PBS) through single-mode optical fibers for spatial mode
cleaning (see Fig. 1). Initially, all four photons are horizontally
polarized, but the use of a fiber polarization controller allows
us to combine all four photons to a single spatial mode
without loss. As all four photons must also be indistinguishable
temporally, they all need to arrive at PBS simultaneously.
This has been achieved by observing the Shih-Alley/Hong-Ou-
Mandel dip between the SPDC photon at the PBS [20,21]. To

observe the two-photon interference dip, the angles of HWP1
and HWP3 are set, respectively, at 22.5◦ and 45◦. All other
wave plates, HWP2, QWP1, and QWP2, are set at 0◦ and LP
is removed. The coincidence between detectors D1 and D2 is
measured by moving the translation stage on horizontal input
mode in Fig. 1. The experimental result shown in Fig. 2(d)
exhibits the dip in visibility of 95.0% at 260-mW pump power
(99.6% after multiphoton noise subtraction). The translation
stage is then set so that the SPDC photons are arriving at
the PBS simultaneously. Then, the four-photon quantum state,
resulting from the double-pair emission of the SPDC, after the
PBS is written as |2,2〉H,V .

We now describe the scheme for heralding a three-photon
quantum state in mode b by detecting a single photon at
D1. The initial four-photon state |2,2〉H,V passes through
HWP1, and the HWP1 angle (0◦ or 22.5◦) is set differently for
preparing different three-photon states. Specifically, HWP1
is set at 0◦ to prepare |1,2〉 and |2,1〉 and set at 22.5◦ to
prepare 1√

2
(|3,0〉 − i|0,3〉),|3,0〉, and |0,3〉. After HWP1, the

state becomes

|HWP 1〉0◦ = 1

2
a
† 2
H a

† 2
V |0〉, (5a)

|HWP 1〉22.5◦ =
(

1

8
a
† 4
H − 1

4
a
† 2
H a

† 2
V + 1

8
a
† 4
V

)
|0〉. (5b)

The subscripts 0◦ and 22.5◦ indicate the angles of HWP1.
The photons then impinge on the partially polarizing beam
splitter (PPBS) designed for unity reflection for vertical po-
larization and 1/3 partial reflection for horizontal polarization.
Considering the case when one photon is transmitted and found
in mode a and three photons are reflected by the PPBS and
found in mode b, the reflected three-photon state heralded by
the presence of a single photon in mode a is given by

|PPBS〉b0◦ = 1√
2
a
†
Ha

† 2
V |0〉, (6a)

|PPBS〉b22.5◦ =
(

1

9
√

2
e2iφa

† 3
H − 1

3
√

2
a
†
Ha

† 2
V

)
|0〉, (6b)

where the phase φ comes from the relative phase difference
between the two orthogonal polarizations when they are
reflected at the PPBS.

The transmitted photon in mode a is used for heralding of
the other three photons by a “click” at detector D1. Then, after
the photons pass through QWP1 and HWP2, either both are
set at 0◦ for Eq. (7a) or QWP1 at 45◦ and HWP2 at φ/4 for
Eq. (7b), the heralded three-photon state becomes

|HWP 2〉0◦ = 1√
2
a
†
H a

† 2
V |0〉, (7a)

|HWP 2〉22.5◦ = 1

2
√

3
(a† 3

H − ia
† 3
V )|0〉. (7b)

Here, we see that the heralded three-photon states |1,2〉
and 1√

2
(|3,0〉 − i|0,3〉) have been prepared. The state |2,1〉

can be prepared from |1,2〉 with the help of HWP2 set at 45◦.
Also, the states |3,0〉 and |0,3〉 can be postselected from the
entangled state or the NOON state 1√

2
(|3,0〉 − i|0,3〉) with a

linear polarizer (LP).
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FIG. 3. Density matrices of experimentally prepared heralded three-photon states. Bold lines in the density matrices indicate ideal target
density matrices. The fidelity is calculated between the ideal target matrix and the experimentally generated density matrix.

We first measure the the value of φ experimentally by
using the |1,1〉H,V component of the SPDC leading to the
coincidence event between detectors D1 and D2. First, HWP1
and QWP1 are set at 15◦ and 45◦, respectively. The photon in
mode b is measured on the projection basis 1√

2
(|H 〉 − |V 〉).

Then, as a function of the HWP2 angle θ , the coincidence
count between detectors D1 and D2 will be proportional to
sin2{ 1

2 (φ − 4θ )}. Thus, by measuring the angle θ at which the
coincidence count is minimized, it is possible to determine the
phase φ. Experimentally, we find that φ = −85.7◦.

In our scheme, the double-pair event of SPDC contributes to
the heralded three-photon state, but triple-pair or higher-order
SPDC events lead to multiphoton noise, as they can also trigger
the four-photon coincidence circuit. As N -pair events of SPDC
with N � 3 increase with the double-pair event of SPDC, one
needs to consider the tradeoff between the detection rate and
the multiphoton noise contribution to the data. In our setup,
we find that 260-mW pump power results in 2.5%, 0.06%, and
0.002% emission probabilities of a single, double, and triplet
pairs, respectively. In case of the states |3,0〉 and |0,3〉, on the
other hand, the fourfold coincidence probability is half of the
state 1√

2
(|3,0〉 − i|0,3〉). Thus, we are able to use twice-high

pump power in this case to reduce the measurement time.

Finally, the heralded three-photon state is characterized by
performing quantum state tomography using 16 projection
measurements set by QWP2, HWP3, and PBS in Fig. 1 and
a maximum likelihood estimation [22]. The experimentally
obtained density matrices for the representative three-photon
states listed in Table I are shown in Fig. 3. Mixed states are
obtained by incoherently adding pure states with the proper
ratio. The three-photon entangled state 1√

2
(|3,0〉 − i|0,3〉)

has the lowest fidelity because the triple-pair contribution
from pulsed SPDC to the noninterfering background is more
noticeable [17,18].

IV. ANALYSIS

In this section, we analyze the experimentally generated
three-photon polarization states with the central-moment
description of quantum polarization up to the third order. (The
fourth- and higher-order Stokes moments can be expressed as
a function of the lower-order moments.) The central moments,
plotted in the corresponding direction on the Poincaré sphere,
show quantum polarization features, such as rotation invariants
and the polarization uncertainty distribution. For instance,
classical unpolarized light is SU(2) rotation invariant, that is,
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it is rotationally invariant in all directions on the sphere. If the
first m moments are rotationally invariant, the state is defined to
be mth-order unpolarized [14]. As for the uncertainty relation
regarding quantum polarization in Eq. (3b), all three-photon
states have a common restriction that the sum of the variances
along three orthogonal polarizations on the Poincaré sphere
(indicating three complementary polarization bases) is
between 6, from 2〈Ŝ0〉, and 15, from 〈Ŝ0〉(〈Ŝ0〉 + 2), because
〈Ŝ0〉 = 3.

The identity density matrix is invariant of any rotation
transformation since Î/4 = Û

†
n(Î/4)Ûn, where Ûn is any SU(2)

rotation. So, this state always gives an isotropic expectation
value for quantum polarization in any basis. That is, every
order of its quantum polarization is rotationally invariant
and the state is hence unpolarized to every order. Since
the state is first-order unpolarized, the second-order central
moment or the variance is given by the mean square of
the Stokes operator. As the eigenvalues of Ŝ3 for the states
|3,0〉,|2,1〉,|1,2〉, and |3,0〉 are 3,1, − 1, and −3, respectively,
the value 〈�̂2

3〉 for the state Î/4 is (9 + 1 + 1 + 9)/4 = 5.
This state has the isotropic variance, so the sum of variance
is 15, making it the maximum sum-uncertainty state. As
expected, in Fig. 4(a), the experimental result confirms the
theoretical results with only small errors. Note that for the
odd polarization orders, the illustrated quantity is the absolute
value of the moment plotted as a function of the direction n on
the Poincaré sphere. For odd polarization orders m it holds that
〈�m

n 〉 = −〈�m
−n〉.

Any second-order unpolarized three-photon quantum state
must be a mixed state, see the proof in [14]. Among the mixed
states, the state 1

3 |3,0〉〈3,0| + 1
2 |1,2〉〈1,2| + 1

6 |0,3〉〈0,3| has
the maximum sum-uncertainty. This state is isotropic up to
the second order and is polarized in the third order, as shown
theoretically and experimentally in Fig. 4(b).

The states |3,0〉 and |0,3〉 have rotation symmetry about
the Ŝ3 axis. The symmetry is preserved upon mixing (i.e.,
incoherent addition of quantum states), and they have vectors
in opposite directions from each other on the Poincaré sphere.
Therefore, the mixed state 1

2 (|3,0〉〈3,0| + |0,3〉〈0,3|) has van-
ishing all odd-order central moments as shown in Fig. 4(c). The
second-order central moment is, however, maximized along
the Ŝ3 axis (with the value of 9) and minimized on the Ŝ1-Ŝ2

plane (with the value of 3). The state 1
2 (|3,0〉〈3,0| + |0,3〉〈0,3|)

therefore is a three-photon maximum sum-uncertainty state,
having the quantum polarization properties of second-order
hidden polarization, polarized in the second order, and with no
third-order polarization.

Let us now consider the case of the entangled state
1√
2
(|3,0〉 − i|0,3〉). It is clear that some quantum polarization

features of the entangled state would be similar to the mixed
state 1

2 (|3,0〉〈3,0| + |0,3〉〈0,3|), as both contain the same basis
states. This is reflected in the first-order and second-order
quantum polarization properties. The key difference between
the two states is inherent coherence and is reflected on the
third-order quantum polarization, producing skewness in three
directions as shown in Fig. 4(d). The three-photon NOON state
is well known to exhibit N times phase sensitivity compared to
a classical state, and this feature is illustrated in the third-order
quantum polarization, showing three oscillations during the 2π

phase change on the Ŝ1-Ŝ2 plane. Note that the figure shows the
absolute value of central moment. In the experiment, the state
is not quite ideal, see the density matrix in Fig. 3(d), so the
skewness is somewhat reduced (resulting in a reduced NOON
state interference visibility) compared to the theoretical one.
Note that the variances 〈�2

1〉,〈�2
2〉, and 〈�2

3〉 are calculated
to be 3, 3, and 9, respectively. Thus the state is also a
maximum sum-uncertainty state. The state has second-order
hidden polarization but is polarized to second and third
order.

We now consider the state 19
36 |3,0〉〈3,0| + 15

36 |1,2〉〈1,2| +
1

18 |0,3〉〈0,3|, which is first-order and third-order polarized
but with isotropic second-order central moment (see Table I).
The theoretical and experimental results shown in Fig. 4(e)
illustrate this feature of the state. Note that since the state is
a mixture of horizontal and vertical basis eigenstates, it has
rotational symmetry about the Ŝ3 axis, but it is not a maximal
sum-uncertainty state.

Finally, consider the state |3,0〉 which is clearly first-order,
second-order, and third-order polarized as all three photons are
horizontally polarized, and this is shown by the anisotropic
features in all orders of central moments in Fig. 4(f). Since
the state is an eigenstate of Ŝ3, 〈�̂m

3 〉 vanishes for all m.
Moreover, both 〈�̂m

1 〉 and 〈�̂m
2 〉 vanish for odd m. Thus

the odd polarization moments all vanish on the Ŝ1-Ŝ2 plane.
Note that the state satisfies (3a) with equality on the Ŝ1-Ŝ2

plane.
The advantages of using the quantum polarization descrip-

tion of the multiphoton state can be summarized as follows.
As evidenced in Fig. 4, the quantum polarization description
allows one to visually identify for which applications the
quantum state is best suited. For instance, the mixed state
1
3 |3,0〉〈3,0| + 1

2 |1,2〉〈1,2| + 1
6 |0,3〉〈0,3| shown in Fig. 4(b)

can be useful for polarization interferometry involving three-
photon correlation measurement. However, the mixed state
1
2 (|3,0〉〈3,0| + |0,3〉〈0,3|) shown in Fig. 4(c) is better suited
for two-photon correlation interferometry due to the anisotropy
in the second-order quantum polarization. Also, the NOON
state offers the best phase sensitivity to SU(2) rotations, as
evidenced in the third-order quantum polarization behavior
shown in Fig. 4(d). Note also from Fig. 4(d) that the NOON
state offers threefold improvement of phase sensitivity over the
classical behavior, as well as the possibility to get unity inter-
ference visibility. Such information is not at all evident from
the density matrix description of the quantum states shown
in Fig. 3, although, for a two-mode state with N photons,
or equivalently, a state of composite system for N spin-1/2
particles, the two figures contain mathematically equivalent
and interconvertible information. Additionally, deviations of
the experimental quantum states from their ideal target states
are more easily identified in Fig. 4 than in Fig. 3, as it is
difficult to deduce such information from a visual inspection
of the density matrices in Fig. 3.

V. CONCLUSION

We have experimentally studied diverse quantum polar-
ization features of different three-photon states, selected to
represent the six possible three-photon polarization classes.
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Ŝ2

ˆ
1
2

ˆ
3
2

ˆ
2
2 ˆ

2
3

ˆ
3
3

ˆ
1
3

Ŝ1
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Ŝ2

FIG. 4. Central-moment quantum polarization descriptions of assorted three-photon states. The rainbow-colored gradient represents the
distance from the origin of the coordinate system. In general, the red color illustrates the farther distance from the origin. Depicted in each
panel are, left-to-right, the mean value 〈|Ŝn|〉, the variance 〈�̂2

n〉, and the absolute value of the skewness 〈|�̂3
n|〉. Note that for odd polarization

orders m, 〈�m
n 〉 = −〈�m

−n〉 and thus the illustrated quantity is the absolute value of the moment plotted as a function of the direction n on the
Poincaré sphere.
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The states have interesting characteristics such as perfect
polarization, absence of polarization, hidden polarization, and
maximum sum-uncertainty. Our classification and experimen-
tal results for three-photon states can be applied as well to
describe the spin features of composite systems consisting
of three spin-1/2 particles with the bosonic characteristic.
In addition, we have shown that subtle quantum polarization
features are more sensitive to state imperfections than those of
state density matrices. Our results hint that the central-moment
description can be used to describe the quality of a multiphoton
polarization state with better sensitivity, particularly in cases
where higher-order polarization features are important.
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