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Linear optical computing (LOC) with thermal light has recently gained attention because the problem is
connected to the permanent of a Hermitian positive semidefinite matrix (HPSM), which is of importance in
the computational complexity theory. Despite the several theoretical analyses on the computational structure of
an HPSM in connection to LOC, the experimental demonstration and the computational complexity analysis
via the linear optical system have not been performed yet. We present, herein, experimental LOC for estimating
the permanent of an HPSM. From the linear optical experiments and theoretical analysis, we find that the LOC
efficiency for a multiplicative error is dependent on the value of the permanent and that the lower bound of
the computation time scales exponentially. Furthermore, our results are generalized and applied to LOC of
permanents of unitary matrices, which can be implemented with a multiport quantum interferometer involving
single photons at the input ports. We find that LOC with single photons, for the permanent estimation, is on
average less efficient than the most efficient classical algorithm known to date, even in ideal conditions.
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I. INTRODUCTION

Quantum computers are expected to perform certain com-
putational tasks exponentially faster than conventional digital
computers [1]. Universal quantum computation relies on,
along with other basic elements, quantum entanglement of
a massive number of qubits. As preparation of large scale
entanglement itself is already a daunting task, it is gener-
ally believed that universal quantum computers are unlikely
to be available soon [2]. Recent efforts are, thus, focused
toward experimentally demonstrating the so-called “quantum
supremacy” with a few tens of qubits [3,4].

In photonic quantum information, quantum supremacy is
often associated with boson sampling which is the problem of
generating samples following multimode interference among
single-photon sources in a linear optical network [5–7]. Since
the sampling probability is related to the permanent of a com-
plex matrix, a hard problem for classical digital computers [8],
Boson sampling is often viewed as a linear optical pathway for
achieving quantum supremacy [9–13].

Recently, boson sampling devices with input photon statis-
tics other than single-photon states have been studied [14–18].
In particular, it has been proposed that the permanent of a Her-
mitian positive semidefinite matrix (HPSM) can be estimated
from a specific output probability of thermal light through a
linear optical network [18–20], although the exact calculation
of the permanent is known to be a #P-hard problem [21].
Linear optical computing (LOC) with thermal light therefore
has been utilized in probing the computational complexity of
the permanent of an HSPM. For instance, approximation of
the permanent of an HPSM has been classified as a BPPNP

problem using LOC [18] and an LOC model was used to
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develop algorithm for calculating permanents of a specific set
of HPSMs [20].

In this work, we report an experimental LOC for estimating
the permanent of an HPSM. From the linear optical experi-
ment with thermal light and theoretical analysis, we find that
the LOC efficiency for a multiplicative error is dependent
on the value of the permanent and that the lower bound of
the computation time scales exponentially with the size of an
HPSM. Furthermore, our results are generalized and applied
to LOC of the permanent of a unitary matrix, associated with
a quantum interferometer involving a linear optical network
and single-photon sources. We find that, even with ideal
single-photon sources and without photon loss, linear optical
computation for estimating the permanent of a unitary matrix
is on average less efficient than the most efficient classical
algorithm known to date. Although it already has been argued
theoretically that linear optical computing of the permanent
would require exponentially many samples [5,6], previous
theoretical studies have been conceptually limited and could
not give quantitative relationship for the computational cost
on the matrix size and the value of permanent. In our work,
from experimental and theoretical studies, we have provided
a quantitative computational cost which can be compared
against other algorithms. These results clearly demonstrate
that linear optical computing of the permanent does not offer
advantages over classical approaches even when quantum
resources are utilized.

II. LINEAR OPTICAL COMPUTING OF THE MATRIX
PERMANENT

Linear optical computing for estimating the permanent of
an HPSM involves the following three main components:
an M × M linear optical interferometer U , thermal light at
the M input modes, and measurement of the coincidence
detection probability at the M output modes. The linear optical
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FIG. 1. Scheme for linear optical computing (LOC) with ther-
mal light involving a 4 × 4 interferometer. The thermal sources
having mean photon number of 〈ni〉 = μi/(1 − μi ) are filtered by
1 nm bandwidth interference filters (IF) and injected into the linear
interferometer (U ), composed of three beam splitters (BSi). The
linear optical transformation is determined by the transmissivities
and the reflection phase shifts (φi) of beam splitters. We measure the
output distribution probability pth (1, 1, 1, 1) from the coincidence
count (C.C.) rate that all detectors (D j) are clicked by a single
photon. Temporal delays (τi) are adjusted so that thermal pulses are
overlapped at BSs. See main text for details.

interferometer is built with a series of beam splitters and
the thermal light state at the ith input mode is described, in
the Fock basis, by ρ th

i = ∑∞
n=0 pth

i (n)|n〉〈n|, where pth
i (n) =

(1 − μi )μn
i and the mean photon number is 〈ni〉 = μi/(1 − μi )

with 0 � μi < 1. Finally, the probability that each of the
M output modes is occupied by a single photon is de-
termined by measuring the M-fold joint detection proba-
bility pth(1, 1, . . . , 1). Then, the permanent of a matrix A,
Perm[A], can be estimated from the joint detection probability
pth(1, 1, . . . , 1) [18–20],

Perm[A] = pth(1, 1, . . . , 1)

/ M∏
i=1

(1 − μi ), (1a)

A = UDU †, where D ≡ diag(μ1, μ2, . . . , μM ).

(1b)

The matrix A is an HPSM as the eigenvalues, i.e., μi, are
greater than or equal to zero.

In the experiment, we have performed permanent estima-
tion for various 2 × 2 and 4 × 4 HPSMs and the experimental
setup is schematically shown in Fig. 1. An M × M unitary ma-
trix U is built with a series of beam splitters. Since the proba-
bility pth(1, 1, . . . , 1) needs to be determined experimentally,
it is convenient that the experiment is repeated at a regular
interval, requiring a pulsed source of thermal light. A pair of
broadband thermal light pulses can be prepared by using the
spontaneous parametric down-conversion (SPDC) process. A
frequency-doubled mode-locked Ti:Sa laser operating at the
repetition rate of 80 MHz and at the pulse width of 140 fs is
used as the pump. The pump laser has the central wavelength
of 390 nm and 780 nm SPDC photon pairs are generated from
a 2 mm thick type-I BBO crystal in the noncollinear geometry.
Obviously, the SPDC photon pair is naturally energy-time
entangled and is in a pure state. The state of each subsystem
individually is described by partial trace over the unobserved
system and therefore is found to be in a thermal state [22,23].

(a)

(b)

FIG. 2. Thermal pulse characterization and interference. (a) The
Hanbury-Brown-Twiss correlation measurement exhibits the thermal
nature of the input pulses: g(2)(0) = 1.926 ± 0.003. Here, t1 − t2

means the detection time difference between the output modes 1
and 2. (b) Two indistinguishable thermal pulses are overlapped at
a 50:50 beam splitter (BS1) by adjusting the time delay τ1. The time
delay τ1 has an offset equal to the inverse repetition rate to choose
two completely uncorrelated thermal pulses. The coincidence count,
normalized by single counts of the two detectors, exhibits a dip when
the two uncorrelated thermal pulses overlap at BS1 and interfere. All
data are acquired by using 1 nm full width at half maximum bandpass
filters in front of the detectors.

In experiment, we choose two completely uncorrelated ther-
mal pulses by introducing a relative optical delay equal to the
inverse repetition rate, τ1 and τ3 in Fig. 1. The thermal pulses
are first coupled to single-mode optical fibers and delivered to
the input modes of the interferometer U . The thermal nature of
the input state can be demonstrated by measuring the second-
order correlation function g(2)(t1 − t2) and the experimental
data shown in Fig. 2(a) clearly indicate the thermal nature of
the input state with g(2)(0) = 1.926 ± 0.003 [24].

For Eq. (1) to satisfy, all input thermal pulses to the linear
optical network U must be indistinguishable so that they in-
terfere. Spectral indistinguishability is ensured by using 1 nm
full width half maximum (FWHM) bandpass filters in front
of the detectors. Temporally, relative optical delays (τ1, τ2,
and τ3) are adjusted so that all input pulses are overlapped at
the beam splitters. When two thermal states interfere at a beam
splitter, the coincidence at the outputs of the beam splitter
exhibits a dip as a function of the relative optical delay, similar
to Shih-Alley–Hong-Ou-Mandel interference, and this effect
can be used to test spectral or temporal distinguishability be-
tween two input thermal states [25–27]. The experimental data
for the two-photon interference with thermal light is shown in
Fig. 2(b). Two indistinguishable thermal pulses are overlapped
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TABLE I. Linear optical computing of the permanent of an HPSM. The unitary matrix (U ) and the mean photon numbers at the input (D)
are prepared according to the target HPSM A = UDU †. The matrix elements U41, U42, U13, and U14 of 4 × 4 unitary matrices are nonzero due to
noise such as dark counts. Perm[A]exact refers to the exact mathematical calculation and Perm[A]exp refers linear optical computing with thermal
light. Multimode interference is essential for linear optical computing and, when the input thermal pulses are made to be distinguishable in
time, incorrect permanent values are estimated as shown in “No interference.” The errors in Perm[A]exp are estimated from the statistical
fluctuation of photocounts and refer to one standard deviation.

U D × 103 A(= UDU †) × 103 Perm[A]exact Perm[A]exp(
0.707 0.709

−0.707 0.705

) (
1.00 0.00
0.00 1.04

) (
1.02 0.02
0.02 1.02

)
1.04 × 10−6 (1.02 ± 0.03) × 10−6

(No interference: 1.56 × 10−6 )(
0.494 0.864

−0.870 0.503

) (
1.25 0.00
0.00 1.92

) (
1.74 0.30
0.30 1.43

)
2.58 × 10−6 (2.54 ± 0.04) × 10−6

(No interference: 3.50 × 10−6 )⎛
⎝−0.635 0.775 0.031 0.045

−0.442 −0.369 −0.513 0.629
0.634 0.513 −0.365 0.462
0.021 0.019 0.776 0.624

⎞
⎠

⎛
⎝1.66 0.00 0.00 0.00

0.00 2.13 0.00 0.00
0.00 0.00 3.11 0.00
0.00 0.00 0.00 1.40

⎞
⎠

⎛
⎝ 1.95 −0.15 0.17 0.12

−0.15 1.99 0.12 −0.72
0.17 0.12 1.94 −0.43
0.12 −0.72 −0.43 2.42

⎞
⎠ 21.4 × 10−12 (20.4 ± 2.7) × 10−12

(No interference: 49.4 × 10−12 )⎛
⎝−0.632 0.775 0.038 0.045

−0.441 −0.369 −0.517 0.629
0.636 0.513 −0.359 0.462
0.022 0.017 0.776 0.623

⎞
⎠

⎛
⎝1.57 0.00 0.00 0.00

0.00 2.60 0.00 0.00
0.00 0.00 2.03 0.00
0.00 0.00 0.00 1.40

⎞
⎠

⎛
⎝ 2.19 −0.31 0.40 0.11

−0.31 1.76 −0.15 −0.30
0.40 −0.15 1.88 −0.12
0.11 −0.30 −0.12 1.77

⎞
⎠ 14.3 × 10−12 (14.8 ± 2.3) × 10−12

(No interference: 33.7 × 10−12 )

at a 50:50 beam splitter (BS1) by adjusting the time delay τ1.
The coincidence count, normalized by single counts of the two
detectors, exhibits a dip when the two uncorrelated thermal
pulses overlap at BS1 and interfere. The ideal visibility in the
thermal case is 1/3 and the experimentally obtained visibility
is 0.33 ± 0.06, indicating that the input thermal pulses are
nearly identical [27].

For linear optical computing of the permanent of an HPSM
A = UDU † with D ≡ diag(μ1, μ2, . . . , μM ), we first need
to prepare an M × M unitary matrix U and thermal states
with 〈ni〉 = μi/(1 − μi ). In single-photon boson sampling,
photon loss is generally detrimental. However, in our case,
the overall efficiency ηi which includes channel loss and the
detector efficiency, can be measured and precompensated by
using the fact that the mean photon number is linearly scaled,
i.e., 〈ni〉 → 〈ηini〉. And, according to Eq. (1), accurate mea-
surement of pth(1, 1, . . . , 1) crucial for estimating Perm[A].
Since we use non-number-resolving detectors, sufficiently
weak thermal light pulses are used to suppress multiphoton
events contributing to the measurement of pth(1, 1, . . . , 1).
The similarity between the target HPSM A and the experi-
mentally prepared HPSM is checked by looking at the count
rate of the detector D j . Slight intensity adjustment of the
thermal pulses allows fine-tuning of the experimental HPSM.
As for the reflection phase shift φi from the beam splitters,
complete determination of all the phase values would not be
trivial. However, the permanent of an HPSM is independent
of the phases and therefore π is assigned to all φi. More
experimental details can be found in Appendixes A and B.

The experimentally implemented matrices U , D and the
resulting HPSM A = UDU † are shown in Table I. To ex-
perimentally estimate the permanent, Perm[A], according to
Eq. (1), pth(1, 1, . . . , 1) is determined from the data accumu-
lated for a period of 20 s and 36 500 s for 2 × 2 and 4 × 4 ma-
trices, respectively. The experimentally estimated permanent
values, obviously, have small errors which are estimated from
the statistical fluctuation of photocounts and refer to one stan-
dard deviation. The error depends on the number of samples
and the value of the permanent. Nevertheless, linear optically

computed values of the permanent agree quite well with the
mathematical values; see Table I. Note that multimode inter-
ference is essential for linear optical computing and, when the
input thermal pulses are made to be distinguishable in time,
incorrect permanent values are estimated as shown in “No
interference”; see details in Appendix C.

III. RESOURCE EFFICIENCY OF LINEAR OPTICAL
COMPUTING OF THE MATRIX PERMANENT

The resource efficiency of linear optical computing for esti-
mating the permanent of an HPSM can be studied by looking
at the relationship between the total number of samples N ,
the dimension of the matrix M, and the output probability
pth(1, 1, . . . , 1), the margin of error ε, and the confidence
level δ which is defined as [28]

δ = Pr[|Perm[A]exp − Perm[A]exact| < εPerm[A]exact],

where Pr[. . .] indicates the probability that the statement “...”
is true and εPerm[A]exact represents the multiplicative error.

Consider now that, from Eq. (1), Perm[A] is related to the
probability that each detector clicks due to a single-photon
pth(1, 1, . . . , 1). Thus the problem can be modeled as bino-
mial sampling, which takes the value zero or 1 with the proba-
bility “1 - pth(1, 1, . . . , 1)” or “pth(1, 1, . . . , 1),” respectively.
Using the error bound of binomial sampling [29,30], the
required number of samples N to achieve the multiplicative
error εPerm[A] is found to be

N = 2(erf−1[δ])2[1 − pth(1, 1, . . . , 1)]

ε2 pth(1, 1, . . . , 1)
, (2)

where erf−1[x] is the Gauss inverse error function. The details
can be found in Appendix D. At a glance, the total number of
samples N seems to be independent of the matrix dimension
M. However, it turns out that the required number of samples
scales as O(eM ) because of the fact that pth(1, 1, . . . , 1) �
e−M . For derivations, see Appendix E.

We find that the relation in Eq. (2) agrees well with the
experimental results. For instance, we applied Eq. (2) to the
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(a)

(b)

(c)

FIG. 3. Efficiency and error analysis. For (a) and (b), diamond
symbols represent the experimental data from the first row in Table I.
In (b), δ values of 95% and 99.7% represent, respectively, two and
three standard deviation confidence level in a Gaussian distribution.
(c) The data points are obtained from the permanent estimation
experiments for many different 2 × 2 HPSMs. Note that the solid
and dashed lines have different scales for the number of samples. All
the lines are due to Eq. (2).

data presented in the first row of Table I and the results are
shown in Figs. 3(a) and 3(b). Moreover, from the permanent
estimation experiments for many different 2 × 2 HPSMs, we
obtain the relation between N and pth(1, 1, . . . , 1) as shown
in Fig. 3(c). The experimental and theoretical results indicate
that linear optical computing for estimating the permanent of
an HPSM is on average inefficient.

The above analysis for the classical experiment (i.e., in-
volving thermal states) can be applied to the problem of esti-
mating the permanent of a unitary matrix U , which is imple-
mented using a quantum interferometer with a linear optical
network and single-photon sources. This is because the prob-
ability that a single photon is detected in each output mode
pq(1, 1, . . . , 1) can still be modeled as binomial sampling
with the only difference being pq(1, 1, . . . , 1) = |Perm[U ]|2
when a single photon is injected in each input mode [5,6].
Similar to Eq. (2), using the error bound of binomial sampling
(see the Appendix D) [29,30], the required number of samples
N to achieve the multiplicative error ε|Perm[U ]|2 is found to

be

N = 2(erf−1[δ])2(1 − |Perm[U ]|2)

ε2|Perm[U ]|2 . (3)

Since the permanent of a unitary matrix is bounded as
|Perm[U ]| � 1 regardless of the matrix dimension [31], the
lower bound of the number of required samples N does not
rise as the matrix dimension increases. At first sight, this
result seems favorable. However, to meaningfully compare
linear optical computing for estimating the permanent of a
unitary matrix against classical algorithms, averaging over
randomly selected unitary matrices is required. The averaged
permanent 〈|Perm[U ]|2〉U in the entire unitary matrix space
can be obtained from the random matrix theory and is given
by [32,33]

〈|Perm[U ]|2〉U = (M − 1)!M!

(2M − 1)!
, (4)

where M is the dimension of the unitary matrix. As the
matrix dimension M increases, 〈|Perm[U ]|2〉U approaches
to

√
4πM/4M asymptotically and, as a result, the required

number of samples N or the computation time for the mul-
tiplicative error scales as O(4M/

√
M ). If we further consider

the channel efficiency η, the required number of samples N
increases by the factor 1/ηM , which is necessary to reach the
same level of statistical error as the coincidence probability
is reduced. Comparing this result to that of the classical
algorithm for exact permanent calculation which scales as
O(M22M ) [31,34], we find that quantum optical estimation
of the matrix permanent, even in the ideal condition (η = 1),
is on average less efficient than computation on a digital
computer.

IV. CONCLUSION

We have reported an experimental linear optical comput-
ing for estimating the permanent of a HPSM with a linear
optical network, thermal light, and single-photon counting
measurement. We have shown that the error bound for linear
optical computing of the permanent of a M × M HPSM is
associated with the M-photon cross-correlation coincidence
probability at the M output modes. We have also shown
that the lower bound of the linear optical computation time
scales exponentially with M, demonstrating that linear optical
computing is inefficient for estimating the permanent of a
HPSM with a multiplicative error. Furthermore, we have
found that the error bound for linear optical computing of
the permanent of a unitary matrix, associated with a quantum
interferometer involving a linear optical network and single-
photon sources, is also tied to the M-photon cross-correlation
coincidence probability at M output modes. This result indi-
cates clearly that, even with ideal single-photon sources and
without photon loss, linear optical computation for estimating
the permanent of a unitary matrix is on average less efficient
than the most efficient classical algorithm known to date.

Although we have seen a lot of progress during the past
decades, quantum computing is really in its infancy and we
strongly believe that it is extremely important to theoretically
and experimentally rule out applications that do not give
advantages over classical approaches even though quantum
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resources are used. In our paper, we report a very thorough
study on one such application, linear optical computing of the
permanent based on multimode interference, and demonstrate
that, even with single-photon sources, the performance will
not be better than classical approaches.
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APPENDIX A: EXPERIMENTAL ESTIMATION OF THE
MATRIX PERMANENT

Assuming that the optical channels are lossless and the
detectors are on-off detectors with unity efficiency, the count
rate at the detector j due to the input thermal pulse at mode i
is given by

Ci j = f t (pi j (1) + pi j (2) + pi j (3) + · · · ) = f tμi j, (A1)

where f is the repetition rate and t is the accumulation time.
The average photon number at the input mode i is 〈ni〉 =
μi/(1 − μi ) and, after the interferometer, the resulting aver-
age photon number at the detector j is 〈ni j〉 = μi j/(1 − μi j ).
The n-photon detection probability of detector j due to the
input thermal pulse at mode i is pi j (n) = (1 − μi j )μn

i j . The
relations 〈ni〉 = ∑

j〈ni j〉 hold as the system is lossless and
Ci = ∑

j Ci j = f tμi because
∑

j μi j ≈ μi under the condi-
tion μi 	 1. The matrix elements of the unitary matrix U
can then be determined from the detector counts as Uji =
eiϕ ji

√
Ci j/Ci from the unitarity condition

∑
j |Uji|2 = 1. The

phase factors ϕ ji cannot be measured here but, as they do
not affect the permanent value, they are arbitrarily assigned
to satisfy the unitarity condition.

The coincidence detection rate when all output modes are
populated with thermal light pulses is given by

Cc = f t[p(1, 1, . . . , 1) + p(1, 2, 1, . . .)

+ p(1, 1, 2, . . .) + · · · ]. (A2)

Under the condition μi 	 1, multiphoton events are suffi-
ciently suppressed and the above equation is approximated to
Cc = f t p(1, 1, . . . , 1).

The permanent of a M × M Hermitian positive semidefi-
nite matrix (HPSM) A = UDU † can then be calculated from
the experimentally measured values as

Perm[A] = Cc

/ M∏
i=1

( f t − Ci ). (A3)

APPENDIX B: FREEDOM OF PHASE ASSIGNMENT FOR
UNITARY MATRICES

There are degrees of freedom to assign the phases of
unitary matrix U without change of the permanent value,
Perm[A]. That is, the matrix elements of U can vary with the

following relationship:

Ui j → ei(αi+β j )Ui j, (B1)

where Ui j is an element of U on the ith row and jth column
and αi and β j are arbitrary phases. The phase relation is
obtained by introducing diagonal phase matrices V and W of
diag(eiα1 , eiα2 , . . . , eiαM ) and diag(eiβ1 , eiβ2 , . . . , eiβM ) for the
unitary transformation U → VUW .

It is easy to see that A = UDU † is invariant under U →
UW transformation due to WW † = I and W †DW = D,

A = U (WW †)D(WW †)U † = (UW )D(UW )†. (B2)

Although the U → VU transformation changes A to A′ =
VAV †, the value of Perm[A′] is the same with Perm[A]. The
relation between A′ and A is summarized as A′

i j = Ai jei(βi−β j ).
Based on the relationship, the Perm[A′] can be written
as

Perm[A′] =
M!∑

σ∈Sn

M∏
i=1

Ai,σ (i)e
i(βi−βσ (i) ), (B3)

where σ (i) of the symmetric group Sn is the ith permutation of
the set {1, 2, . . . , M}. Since the permutation just changes the
order of elements,

∑
i βi and

∑
i βσ (i) have the same value,

i.e.,
∏M

i=1 ei(βi−βσ (i) ) = 1. Accordingly, we can show that

Perm[A′] = Perm[A] =
M!∑

σ∈Sn

M∏
i=1

Ai,σ (i). (B4)

Considering the above results, the permanent value is invari-
ant under U → VUW and there are degrees of freedom for
phase of αi and β j for computing of the permanent of an
HPSM.

To demonstrate linear optical computing of the permanent
of an HPSM, the 4 × 4 unitary matrices were experimentally
built with a series of beam splitters as shown in Fig. 1. The
phase shift due to reflection is denoted by φi for each beam
splitter (BSi) and the phase shift induced from the other side,
if the BS is lossless, is π − φi. Then, the 4 × 4 unitary matrix
is written as⎛
⎜⎜⎝

r1eiφ1 t1 0 0
t1r2eiφ2 r1r2ei(π−φ1+φ2 ) r3t2eiφ3 t3t2

t1t2 r1t2ei(π−φ1 ) r3r2ei(π−φ2+φ3 ) t3r2ei(π−φ2 )

0 0 t3 r3ei(π−φ3 )

⎞
⎟⎟⎠,

where ti and ri are real numbers and the squares are the trans-
mission and reflection ratios of BSi, respectively. The ratios
can be measured from the intensity splitting, but complete
determination of all φi would not be trivial in experiment.
Fortunately, the permanent of UDU † is independent of φi and
therefore π is assigned to all φi in this work without loss of
generality.

APPENDIX C: EFFECT OF TEMPORAL
DISTINGUISHABILITY

The multimode interference is essential for linear optical
computing and, when the input thermal pulses are made to
be distinguishable in time, incorrect permanent values are
estimated. In this section, we discuss the detection probability
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pth
no(1, 1, . . . , 1) that a single photon is detected in each output

mode under “No interference.” For the two-mode case, there
are two possibilities contributing to pth

no(1, 1): (i) two detectors
are clicked due to the thermal pulses at a single mode and
(ii) two detectors are clicked by the thermal pulses from each
of the two modes. For the case (i), the bunching property of
thermal light enhances the detection probability by a factor
of two. However, the case (ii) doesn’t have any enhancement
in detection probability since there is no correlation between
thermal pulses in different input modes. In summary, the total
detection probability for two mode under “No interference”
can be described as pth

no(1, 1) = ∑2
i, j=1 ei j |U1i|2|U2 j |2μiμ j if

μi 	 1, where Uji is the element of a unitary matrix de-
scribing the transition from input mode i to output mode j
and μi represents the mean photon number 〈ni〉 = μi/(1 −
μi ) of thermal light in input mode i. The ei j corresponds
to the enhancement factor: ei j = 2 if i = j and ei j = 1 if
i �= j.

Similarly, the four-mode case has five situations: (i) four
detectors are clicked due to the thermal pulses at a single
mode, (ii) three detectors are clicked due to the thermal
pulses at a single mode and another detector is clicked
from the source of another input mode, (iii) two detec-
tors are clicked from a single input mode source and the
other two detectors are clicked from two different input
modes, (iv) each pair of two detectors is clicked from the
source of each of two input modes, and (v) each detector
is clicked from each different input mode. Enhancement
factors ei jkl for the four-mode case are 24, 6, 4, 2, and 1
for (i)–(v), respectively [35]. By accumulating all contribu-
tions, the output probability is obtained as pth

no(1, 1, 1, 1) =∑4
i, j,k,l=1 ei jkl |U1i|2|U2 j |2|U3k|2|U4l |2μiμ jμkμl if μi 	 1.
To verify the multimode interference, the incorrect perma-

nent values of pth
no(1, 1, . . . , 1)/

∏M
i=1(1 − μi ) are shown in

Table I.

APPENDIX D: RESOURCE EFFICIENCY OF LINEAR
OPTICAL COMPUTING

The permanent of an HPSM can be estimated from the
probability that each detector clicks due to a single photon
pth(1, 1, . . . , 1) with thermal light at input ports as shown in
Eq. (1). The linear optical computing (LOC) with thermal
light can be modeled as binomial sampling, which takes
zero or 1 with the probability of “1 − p” or “p,” where p =
pth(1, 1, . . . , 1), respectively. If the number of samples N is
large enough, binomial distribution B(N, p) can be approxi-
mated by the normal distribution N [N p,

√
N p(1 − p)], where

N p and
√

N p(1 − p) are the mean value and standard devia-
tion of the normal distribution, respectively [29,30]. The prob-
ability density function can be translated to standard normal
distribution N [0,

√
p(1 − p)/N]. It gives a confidence level

as δ = Pr[| p̂ − p| < zc
√

p(1 − p)/N] [29,30], where p̂ is the
estimated value by sampling and zc is the critical value for
confidence level δ based on the standard normal distribution.
Here, the term of zc

√
p(1 − p)/N means tolerable error and

the critical value and confidence level are in the relationship
of zc = √

2erf−1[δ], where erf−1[x] is the Gauss inverse error
function. For instance, confidence levels are 68%, 95%, and
99.7% when zc is 1, 2, and 3, respectively.

For a multiplicative error εp, the margin of error ε can be
obtained by setting εp = zc

√
p(1 − p)/N . Thus the margin of

error for LOC with thermal light is given as

ε = erf−1[δ]

√
2[1 − pth(1, 1, . . . , 1)]

N pth(1, 1, . . . , 1)
. (D1)

In another form, the required number of samples N for a
multiplicative error is

N = 2(erf−1[δ])2[1 − pth(1, 1, . . . , 1)]

ε2 pth(1, 1, . . . , 1)
. (D2)

At a glance, the total number for samples N seems to be
independent of the matrix dimension M. However, it turns out
that the required number of samples scales as O(eM ) because
of the fact that pth(1, 1, . . . , 1) � e−M . See Appendix E for
details of the bound. In a strict sense, the above result is for
the estimation of pth(1, 1, . . . , 1), but the required N is the
same for Perm[A] because they have multiplicative relation of
pth(1, 1, . . . , 1) = Perm[A] × ∏M

i=1(1 − μi ).
If the largest eigenvalue of matrix A, μmax, is larger

than 1, the matrix A needs to be scaled as A/μmax

since μi > 1 is unphysical for LOC. For the case,
Perm[A] = μM

maxPerm[A/μmax] is estimated from the LOC
of Perm[A/μmax]. Since this scaling also has multiplicative
relation, the required N does not change for the same margin
of error and confidence level about a multiplicative error.

If we consider an almost multiplicative error ε
√

p, scal-
ing factors become relevant. If μmax > 1 and the matrix A
is scaled as A/μmax, the confidence levels of Perm[A] and
pth(1, 1, . . . , 1) of Perm[A/μmax] have the relationship of

δ = Pr[|Perm[A]samp − Perm[A]exact| < ε
√

Perm[A]exact]

= Pr

[
|pth(1, 1, . . . , 1)samp − pth(1, 1, . . . , 1)exact|

< ε

√
pth(1, 1, . . . , 1)exact

∏M
i=1(1 − μi/μmax)

μM
max

]
. (D3)

As the result, the margin of error for almost multiplicative
ε
√

Perm[A] is found as

ε = erf−1[δ]

√
2[1 − pth(1, 1, . . . , 1)]μM

max

N
∏M

i=1(1 − μi/μmax)
, (D4)

and the required number of samples is given as

N = 2(erf−1[δ])2[1 − pth(1, 1, . . . , 1)]μM
max

ε2
∏M

i=1(1 − μi/μmax)
. (D5)

It shows the required number of samples mainly depends
on the μmax and matrix dimension M since pth(1, 1, . . . , 1)
bounded by e−M does not significantly affect the required
number of samples.

The above analysis for the classical experiment involving
thermal light can be applied to the problem of estimating the
permanent of a unitary matrix U , which is implemented using
a quantum interferometer with a linear optical network and
single-photon sources. This is because the probability that a
single photon is detected in each output mode pq(1, 1, . . . , 1)
can be modeled as binomial sampling with the only difference
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being pq(1, 1, . . . , 1) = |Perm[U ]|2 when a single photon is
injected in each input mode [5,6]. Based on the analysis of
LOC with thermal light, the required number of samples for
permanent estimation of a unitary matrix about multiplicative
error are given as

N = 2(erf−1[δ])2(1 − |Perm[U ]|2)

ε2|Perm[U ]|2 (D6)

by replacing pth(1, 1, . . . , 1) in Eq. (D2) with
pq(1, 1, . . . , 1) = |Perm[U ]|2. The scaling behavior about the
matrix size is discussed in the main text.

Since LOC with single-photon sources does not require
scaling factors, the required N for almost multiplicative error
are given as

N = 2(erf−1[δ])2(1 − |Perm[U ]|2)

ε2
. (D7)

The |Perm[U ]|2 is less than or equal to one for every matrix di-
mension, so that the required N is bounded by 2(erf−1[δ]/ε)2

regardless of the matrix dimension.

APPENDIX E: UPPER AND LOWER BOUNDS
OF pth(1, 1, . . . , 1)

The required number of samples N , for LOC of the per-
manent of an HPSM, depends on the detection probability
pth(1, 1, . . . , 1); see Eqs. (D2) and (D5). Thus we need to find

out the bounds of pth(1, 1, . . . , 1) = Perm[A] × ∏M
i=1(1 −

μi ) to verify the scaling behavior of N about the matrix dimen-
sion M. Here, A = UDU † and D = diag(μ1, μ2, . . . , μM ),
where 0 � μi < 1. Considering the detection probability
without input, the lower bound can be easily found as zero.
However, the upper bound is nontrivial, so we try to find
the upper bound based on physical intuition concerning the
thermal light properties in linear interferometer. Two hypothe-
ses are made to obtain the upper bound: (i) pth(1, 1, . . . , 1)
will be maximized if the photons are uniformly distributed
and (ii) a thermal light source is injected into only one
input channel to avoid the photon bunching effect. The hy-
potheses give two conditions that |Ui j | = 1/

√
M and μi =

0 (i �= 1), respectively. Under the conditions, Perm[A] is
calculated as M!(μ1/M )M ; accordingly pth(1, 1, . . . , 1) =
M!(μ1/M )M (1 − μ1). The pth(1, 1, . . . , 1) is maximized with
μ1 = M/(M + 1), and it is given as

Max[pth(1, 1, . . . , 1)] =
(

1

1 + M

)1+M

M!. (E1)

As the matrix dimension M increases, the pth(1, 1, . . . , 1)
asymptotically approaches 1/eM . Consequently, for a multi-
plicative error in Eq. (D2), the lower bound of the number
of samples N or computation time scales exponentially and
the computation time for an almost multiplicative error in
Eq. (D5) mainly depends on the scaling factors and matrix
dimension.
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