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Abstract: BosonSampling is a problem of sampling events according to the transition prob-
abilities of indistinguishable photons in a linear optical network. Computational hardness of
BosonSampling depends on photon-number statistics of the input light. BosonSampling with
multi-photon Fock states at the input is believed to be classically intractable but there exists an
efficient classical algorithm for classical input states. In this paper, we present a mathematical
connection between BosonSampling with quantum and classical light inputs. Specifically, we
show that the generating function of a transition probability for Fock-state BosonSampling (FBS)
can be expressed as a transition probability of thermal-light inputs. The closed-form expression
of a thermal-light transition probability allows all possible transition probabilities of FBS to be
obtained by calculating a single matrix permanent. Moreover, the transition probability of FBS
is shown to be expressed as an integral involving a Gaussian function multiplied by a Laguerre
polynomial, resulting in a fast oscillating integrand. Our work sheds new light on computational
hardness of FBS by identifying the mathematical connection between BosonSampling with
quantum and classical light.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

When indistinguishable photons enter a linear optical network, multimode interference draws
various output-photon distributions. If the input photons are prepared in a multi-photon Fock
state, each transition probability is calculated with the absolute square of a matrix permanent [1].
Even though the computational complexity of computing the absolute square of permanents is
still not rigorously proven, it is strongly believed to be in the same complexity class as computing
permanents, which is a #P-hard problem [2,3]. Thus, generating samples according to the
transition probabilities, namely Fock-state BosonSampling (FBS), is considered to be a classically
intractable problem [4–7]. To demonstrate that a quantum device can outperform a classical
computer experimentally, large-scale FBS devices are under development [8–11].
Besides Fock-state inputs, BosonSampling with various input sources has been studied in

terms of the computational complexity [12–21]. For instance, the transition probability from
thermal light to a specific output photon distribution can be estimated from the permanent of a
Hermitian positive semidefinite matrix (HPSM) [22–25]. Because there is an efficient classical
algorithm for thermal-light BosonSampling (TBS), by using Stockmeyer’s approximate counting
algorithm, the computational complexity of approximating the transition probability, i.e. the
permanent of an HPSM, is classified as BPPNP [24,26]. In addition, inspired by TBS, a classical
sampling algorithm for approximating the permanent of an HPSM within an additive error has
been proposed [25].
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In this paper, we present a mathematical connection between BosonSampling with quantum
and classical light inputs. Specifically, we show, in Sec. 2, that the generating function of
transition probabilities for FBS can be interpreted as a transition probability of TBS. Because of
their relations with matrix permanents, the result also draws a connection between the permanents
of submatrices formed from a unitary matrix and an HPSM. The closed-form expression of a
transition probability of TBS allows all possible transition probabilities of FBS to be obtained by
calculating a single matrix permanent. However, in Sec. 3, we show that the method turns out to
be exponentially slower than the brute-force permanent calculations for all possible transitions.
Furthermore, by exploiting the connections, we express the transition probabilities of FBS in a
definite integral involving a Gaussian function multiplied by a Laguerre polynomial in Sec. 4.
Considering the fast oscillating integrand, we discuss the computational hardness of FBS and
the absolute square of a matrix permanent. Finally, we discuss the potential application of our
connections for estimating output mode correlations of FBS, in Sec. 5, which is expected to be
used to certify whether a given BosonSampling device is properly working [27,28].

2. Generating function for Fock-state BosonSampling

We consider a lossless M-mode linear optical interferometer for FBS, described by a unitary
operator Û. The transition probability from a multi-photon Fock input state |n〉 =

⊗M
k=1 |nk〉 to

the output state |m〉 =
⊗M

k=1 |mk〉 is given by Pf (n,m) = |〈m|Û |n〉|2. Here, nk and mk represent
the number of photons in the k-th input and output modes, respectively, and the total number
of photons is conserved as N =

∑M
k=1 nk =

∑M
k=1 mk because of the lossless condition. Through

the use of the unitary relation for the bosonic creation operator of Ûâ†j Û† =
∑m

k=1 Ujkâ†k , the
transition probability can be rewritten in the absolute square of a matrix permanent as follows:

Pf (n,m) =
|Perm([U]n,m)|2∏M

k=1 nk!mk!
, (1)

where [U]n,m is the N × N submatrix formed by taking the entry Ujk ‘mj’ times for row and ‘nk’
times for column from the unitary matrix U [1].
Here, we construct a generating function of all possible transition probabilities for the input

Fock state |n〉. Through the introduction of an indeterminate z = (z1, . . . , zM), the generating
function can be built as [29–31]

G(z) =
∞∑

m=0
Pf (n,m)

M∏
k=1

zmk
k , (2)

where every possible M-mode output configuration is assigned to the summation index. Note
that if the total photon number of an output state differs from N, the transition probability is zero.
A specific transition probability Pf (n,m) can be extracted by taking the mk-th partial derivative
of the generating function with respect to each zk and making z = 0, i.e.,

Pf (n,m) =
(

M∏
k=1

∂mk
zk

mk!

)
G(z)

���
z=0

. (3)

When Pf (n,m) is substituted with its bra-ket notation |〈m|Û |n〉|2, the generating function is
recast into

G(z) =
∞∑

m=0
〈n|Û† |m〉〈m|Û |n〉

M∏
k=1

zmk
k

= 〈n|Û†
(

M⊗
k=1

∞∑
mk=0

zmk
k |mk〉〈mk |

)
Û |n〉.

(4)
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The term inside the parentheses is proportional to amulti-mode thermal-light state ρ̂th =
⊗M

k=1 ρ̂
th
k ,

with ρ̂th
k = (1 − zk)

∑∞
mk=0 zmk

k |mk〉〈mk | following Bose-Einstein statistics represented by a mean
photon number of zk/(1 − zk). Consequently, the generating function can also be expressed as

G(z) = 〈n|Û
† ρ̂thÛ |n〉∏M

k=1(1 − zk)
. (5)

Intriguingly, the above equation shows that the generating function is associated with TBS
[22–25] because the numerator 〈n|Û† ρ̂thÛ |n〉 corresponds to the transition probability Pth

r (ρ̂
th,n)

from thermal light ρ̂th to |n〉 via the reversed linear optical interferometer of Û†. Here, the
subscript r is introduced to emphasize that the linear optical interferometer is reversed.
From Eqs. (2) and (5), we can find a mathematical relationship between FBS and TBS:

Pth
r (ρ̂

th,n) =
∞∑

m=0
Pf

r(m,n)
M∏

k=1
(1 − zk)zmk

k , (6)

where the subscript r can be dropped by replacing the linear optical interferometer Û† with
Û. Herein, we use the fact that time reversal gives the same transition probability, i.e.,
Pf (n,m) = Pf

r(m,n). Figure 1 shows a physical interpretation of how the transition probabilities
of the two different input sources are related. The multi-mode thermal light state is a statistical
mixture of photon-number states, ρ̂th =

∑∞
m=0 PBE(m)|m〉〈m|, following the Bose-Einstein

distribution PBE(m) =
∏M

k=1(1 − zk)zmk
k . The transition of thermal light can therefore be

considered as the incoherent sum of the transitions of multi-photon Fock states |m〉 satisfying the
photon number conservation, with a weight of PBE(m), as described in Eq. (6).

Fig. 1. A pictorial description of the connection between thermal-light BosonSampling
and Fock-state BosonSampling. The multi-mode thermal light state ρ̂th is a statistical
mixture of photon-number states |m〉 following the Bose-Einstein statistics PBE(m) =∏M

k=1(1 − zk)z
mk
k . That is, the transition of thermal light can be considered as the incoherent

sum of infinite transitions of multi-photon Fock states |m〉, and the thermal-light transition
probability Pth(ρ̂th,n) can be expressed as the sum of the Fock state transition probability
Pf (m,n) with a weight of PBE(m). The connection can be summarized as Pth(ρ̂th,n) =∑∞

m=0 PBE(m)Pf (m,n).

The relationship in Eq. (6) can be easily extended for the permanents of two types of matrices
because each of the transition probabilities is expressed with the permanent of different matrix
types. Similar to Eq. (1), the transition probability of TBS can be written as a matrix permanent
as follows:

Pth(ρ̂th,n) =
Perm([UZU†]n,n])∏M

k=1 nk!

M∏
k=1
(1 − zk), (7)

where Z = diag(z) and UZU† is a Hermitian positive semidefinite matrix (HPSM), given zk ≥ 0
[24,25]. Because of Eq. (6), the permanents of submatrices formed from the unitary matrix and
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the HPSM are connected as

Perm([U†ZU]n,n) =
∑

m∈N
|Perm([U]n,m)|2

M∏
k=1

zmk
k

mk!
. (8)

The set N for the summation index consists of m satisfying the photon number conservation∑M
k=1 mk =

∑M
k=1 nk.

3. One-shot calculation of all transition probabilities for Fock-state BosonSam-
pling

The generating function in Eq. (2) encodes all Pf (n,m) as the coefficients of a power series∏M
k=1 zmk

k . Interestingly, through the combination of Eqs. (5) and (7), the generating function can
be expressed in a single matrix permanent,

Perm([U†ZU]n,n)∏M
k=1 nk!

=

∞∑
m=0

Pf (n,m)
M∏

k=1
zmk
k . (9)

Therefore, every transition probability of FBS can be extracted from the coefficients of
∏M

k=1 zmk
k

in the polynomial expansion of Perm([U†ZU]n,n). At a glance, it seems that there might be
an exponential improvement in the computational cost because it only requires a single matrix
permanent, Perm([U†ZU]n,n), for evaluating all Pf (n,m). To compare the one-shot calculation
with a brute-force method, we investigate the computational costs of both methods.

Firstly, we analyze the cost of Perm(A) based on Ryser’s formula, known for being the most
efficient classical algorithm to date for calculating a permanent of a matrix [32,33],

Perm(A) = (−1)N
∑

s⊆{1,...,N }
(−1) |s |

N∏
i=1

∑
j∈s

aij. (10)

Here, aij is an element of an N × N matrix A and the index s of the outer summation is assigned
by all possible subsets of {1, . . . ,N}. |s| refers to the cardinality or number of elements of the
subset s. The calculation of Ryser’s formula can be optimized by using a Gray code, which picks
the subsets so that only a single element is changed at a time [34]. If aij is a number, the cost of
the inner summation of aij over j ∈ s can be lowered to O(1) by using a Gray code. The costs of
the product over i and the outer summation over s are O(N) and O(2N), respectively. To sum up,
the total computational cost of Perm(A) using Ryser’s formula is O(N2N).
According to Eq. (1), each transition probability can be calculated from the permanent of an

N × N matrix [U]n,m and the number of possible output states is given as a binomial coefficient,(M+N−1
N

)
, for a lossless M-mode linear optical interferometer and N indistinguishable photons.

As a result, the brute-force method, which calculates all the transition probabilities directly, has
a computational cost of O(

(M+N−1
N

)
N2N) ≈ O(eN(M/N)NN1/22N) [35]. We note here that the

symmetries of the submatrix structures due to the multiplicities in n and m are not considered in
the evaluation of the permanents [36–38], so the computational cost can be further reduced.
In case of the one-shot method, the elements of [U†ZU]n,n are multivariate irreducible

polynomials of zk where k runs from 1 to M. Therefore, we need to analyze the cost of computing
the permanent newly. The cost of the inner summation over j ∈ s in Eq. (10) cannot be reduced
to less than O(M) because each coefficient of zk has to be separately calculated. When the cost
of the multiplication over i and the outer summation over s is considered without polynomial
expansions, the total cost for calculating Perm([U†ZU]n,n) is given as O(MN2N). The cost is
exponentially more efficient than that of the brute-force method O(eN(M/N)NN1/22N) because M
should be larger than N for FBS [3]. However, the polynomial expansion of Perm([U†ZU]n,n) is
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necessary to extract the transition probability Pf (n,m) from the coefficient of
∏M

k=1 zmk
k , as seen

in Eq. (9). Unfortunately, the main computational cost arises from the polynomial expansion.
For the polynomial expansion of the product in Eq. (10), the multiplication of N polynomials
having M irreducible terms costs O(MN) for each s. Bacause there are 2N of subsets s, the total
cost of the multiplication becomes O(MN2N). In addition, the outer summation for

(M+N−1
N

)
of

irreducible terms resulting from the multiplication requires a computational cost ofO(
(M+N−1

N
)
2N).

Consequently, the total cost of computing Perm([U†ZU]n,n) to extract all configurations of the
transition probabilities of the FBS is O(MN2N) when the most dominant cost is considered.
According to a comparison of the cost of one-shot calculation of Perm([U†ZU]n,n) with that
of brute-force method, the one-shot calculation requires an order of O((N/e)NN−1/2) times the
computational cost of the brute-force method.

4. Definite integral form of transition probabilities for Fock-state BosonSam-
pling

The computational hardness of TBS was investigated by expressing Pth(ρ̂th,n) in a definite
multi-dimensional integral with a non-negative integrand. Because the non-negative integrand
can be considered as a probability density function, it allows an efficient sampling algorithm for
TBS [24]. Similarly, we construct a definite integral form of Pf (n,m) by exploiting the relation
in Eq. (6) and a integral form of Pth(ρ̂th,n), and discuss the computational hardness of FBS.

Firstly, we recast the transition probability of thermal light in a definite integral form. For this,
the multi-mode thermal light state is written as the Glauber-Sudarshan P-representation.

ρ̂th =

∫
CM

M∏
k=1

[
d2αk

π

1 − zk

zk
exp

(
−
1 − zk

zk
|αk |

2
)]
|α〉〈α |. (11)

The representation shows that thermal-light state can be considered as a Gaussian mixture of
multi-mode coherent states |α〉 = ⊗M

k=1 |αk〉 [39,40].
Similar to Fig. 1, the transition of thermal light can be decomposed into an infinite number of

transitions of coherent states |α〉. Multi-mode interference of |α〉 via a lossless linear optical
interferometer Û† results in the output coherent state of |β〉 = ⊗M

j=1 |βj〉, where βj =
∑M

k=1 U∗kjαk

and
∑M

k=1 |αk |
2 =

∑M
j=1 |βj |

2. The transition probability from |α〉 to a specific multi-photon Fock
state |n〉 is therefore given as |〈n|β〉|2, i.e.,

Pcs
r (α,n) =

M∏
j=1

e−|βj |
2 |βj |

2nj

nj!
=

M∏
j=1

e−|αj |
2 |βj |

2nj

nj!
. (12)

By exploiting the relation in Eq. (11), the transition probability of thermal light to |n〉 can be
expressed as a Gaussian mixture of the transition probability Pcs

r (α,n) as follows:

Pth
r (ρ̂

th,n) =
∫
CM

M∏
k=1

[
d2αk

π

1 − zk

zk
exp

(
−
1 − zk

zk
|αk |

2
)]

Pcs
r (α,n), (13)

where the integration is over the whole complex plane CM for all αk. Note that the integrand in
Eq. (13) is nonnegative and classically tractable, so that there is an efficient sampling algorithm
for TBS [24].
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To find a definite integral form for FBS, we substitute the thermal light transition probability
of Eq. (6) with Eq. (13) and apply partial derivatives and set z = 0 on each side.

Pf (n,m) =
(

M∏
k=1

∂mk
zk

mk!

)
Pth

r (ρ̂
th,n)∏M

i=1(1 − zi)

�����
z=0

=∫
CM

M∏
k=1

[
d2αk

mk!π
∂mk

zk

[
1
zk
exp

(
−
1 − zk

zk
|αk |

2
)]

z=0

]
Pcs

r (α,n).

(14)

The mk-th partial derivatives with respect to zk in the second line are identified as

(−1)mk
mk!

zmk+1
k

e−
1−zk

zk
|αk |

2
Lmk

(
|αk |

2

zk

)
, (15)

where Lmk (x) is a Laguerre polynomial, such that

Lmk (x) ≡
mk∑
l=0

(
mk

l

)
(−1)l

l!
xl. (16)

When Eqs. (12) and (15) are applied to Eq. (14), the probability is rewritten as

Pf (n,m) =
M∏

k=1

∫
CM

d2αk

nk!π
|βk |

2nk
(−1)mk

zmk+1
k

e−
|αk |

2
zk Lmk

(
|αk |

2

zk

)�����
z=0

. (17)

To simplify the integrand, we rearrange the equation by supposing that every zk approaches to 0
with the same rate, i.e., zk = z for all k. The integral variable αk is then replaced with γk = αk/

√
z,

and Eq. (17) becomes

Pf (n,m) =
M∏

k=1

∫
CM

d2γk

nk!π
(−1)mk |ηk |

2nk znk−mk e−|γk |
2
Lmk

(
|γk |

2
)����

z=0
, (18)

where ηk = βk/
√

z =
∑M

j=1 U∗jkγj. Because
∏M

k=1 znk−mk = 1 for N =
∑M

k=1 mk =
∑M

k=1 nk, the
transition probability of FBS becomes a definite multi-dimensional integral without zk, as follows:

Pf (n,m) = (−1)N
M∏

k=1

∫
CM

d2γk

nk!π
|ηk |

2nk e−|γk |
2
Lmk

(
|γk |

2
)
. (19)

The integral can also be used for computing the absolute square of permanents for unitary
submatrices by using the relation in Eq. (1). Note that this integral form of Pf (n,m) is more
generalized than the integral in Ref. [41], which was derived only for mk = 0 or 1.
Unlike the transition probability of thermal light in Eq. (13), the integrand of Pf (n,m) in

Eq. (19) could be negative. Therefore, the integrand cannot be considered as a probability
density function and the efficient sampling would be hard. Furthermore, the integrand is a
highly oscillatory function of γk because of the Laguerre polynomials, as seen in Eq. (16). The
numerical integration of such oscillating function is known to be a difficult task even though some
techniques have been developed for some specific classes [42] and the numerical integration in
high dimension becomes intractable as the dimensionality of the integral space grows, which is
the so-called “Curse of Dimensionality" [43]. The hardness of integrating the highly oscillatory
function would be interpreted as the reason for the hardness of FBS. Note that similar highly
oscillatory integrands occur in another quantum sampling problem [44].
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5. Conclusion

We have determined that a transition probability of TBS can serve as a generating function of
transition probabilities for FBS. The connection was explained via both mathematical description
and physical interpretation. The closed-form expression of a transition probability of TBS
allowed the calculation of all possible transition probabilities of FBS with a single permanent
calculation, although the one-shot calculation consumes more time than the brute-force method
does. Moreover, the connection was applied to derive a definite integral for the Fock-state
transition probability. With the result, we discussed the computational complexity of FBS by
associating it with the hardness of integration. Our work sheds new light on computational
hardness of FBS by identifying the mathematical connection between BosonSampling with
quantum and classical light.
Our connection could become very versatile by assigning certain numerical values to zk

and differentiating Eq. (9) with respect to zk. For instance, the probability of excluding the
photon-click events at an output mode i can be obtained from Perm([U†ZU]n,n)/

∏M
k=1 nk! with

zi = 0 for the i-mode and zk = 1 for the other modes. In addition, by taking the derivatives of
Perm([U†ZU]n,n)/

∏M
k=1 nk! with respect to zi and zj and making z = 1, one can estimate the mode

correlation between i and j modes, i.e., 〈m̂im̂j〉 =
∑∞

m=0 mimjPf (n,m) with the bosonic number
operator m̂i. Even with the identical linear interferometer, the mode correlation differs across
types of input sources and the indistinguishability of particles. Based on this feature, the analysis
of the mode correlation can be utilized to benchmark BosonSampling whether a device generates
output-photon distributions according to the transition probabilities that is difficult to classically
simulate [27,28]. Note that the more zk are assigned by numbers, the lower the computational
cost of Perm([U†ZU]n,n).
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