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Abstract: A key technique to perform proper quantum information processing is to get a high
visibility quantum interference between independent single photons. One of the crucial elements
that affects the quantum interference is a group velocity dispersion that occurs when single
photons pass through a dispersive medium. We theoretically and experimentally demonstrate
that an effect of group velocity dispersion on the two-photon interference can be cancelled
if two independent single photons experience the same amount of pulse broadening. This
dispersion cancellation effect can be applied to a multi-path linear interferometer with multiple
independent single photons. As multi-path quantum interferometers are at the heart of quantum
communication, photonic quantum computing, and boson sampling applications, our work should
find wide applicability in quantum information science.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Quantum interference effects are at the heart of various quantum information processing
applications, including quantum communication [1,2], quantum teleportation [3–6], quantum
imaging [7–10], quantum metrology [11], and quantum computing [12,13]. Therefore, in photonic
quantum information, attaining high visibility quantum interference is often synonymous to
demonstrating the desired quantum information tasks. One of the crucial elements that affects the
quantum interference is the group velocity dispersion that occurs when the single photons pass
through a dispersive medium [14–20]. Such dispersive medium can be an optical fiber to transport
the single photons [21] and other optical components in the interferometer. Especially, if the
photon bandwidth is large, even for a thin medium, the dispersion effects should be considered
and dealt with properly.

One of the simplest systems for the quantum interferometer is the two-photon interferometer
[22] in which two indistinguishable single photons injected into each input mode of a 50/50 beam
splitter become coalesced and found together in either one of the two output modes of the beam
splitter due to the bosonic nature of photons. The dispersion effect on the two-photon interference
with photon pairs generated via spontaneous parametric down-conversion (SPDC) process has
been extensively studied for the fundamental aspects [23–27] and shown that a dispersive medium
in one arm does not affect the two-photon interference if there is frequency anti-correlation
between two entangled-photons. This effect of dispersion cancellation based on frequency
anti-correlation between the entangled photons has been applied to particular applications such
as quantum optical coherence tomography [28,29] and quantum clock synchronization [30]. It is
worthwhile to note that frequency anti-correlation between the entangled photons also allows
non-local dispersion cancellation in which the two or more photons never interact with each other
at a beam splitter before detection [31–33].

For quantum information processing applications, however, quantum interference with the
independent single photons [34] has broader applicability and, therefore, it is necessary to
understand how to deal with the negative effects of dispersion in this scenario. In particular, an
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interesting question arises as to whether it would be possible to achieve dispersion cancellation
in a multi-mode quantum interferometer with independent single photons, see Fig. 1.

Fig. 1. Schematic of a photonic quantum computing circuit. Linear optics are used for
implementing quantum gates and all such optical elements introduce dispersion to the single
photon pulses.

In this paper, we theoretically and experimentally demonstrate that the effect of group velocity
dispersion in a quantum interferometer can be cancelled even with independent single photons
at the input. Specifically, we show that Hong-Ou-Mandel-type two-photon interference with
independent single photons at the input to the beam splitter exhibits cancellation of the group
velocity dispersion effect if two independent single photons experience the same amount of
pulse broadening before injected into a beam splitter. Each single photon pulse, prepared by
heralding a photon of the photon pair born in the process of SPDC pumped by a femtosecond
pulsed laser, becomes broadened as a result of propagation through a single-mode optical fiber
[35]. However, the two-photon interference does not exhibit any broadening, thereby exhibiting
cancellation of group velocity dispersion in a quantum interferometer if the independent single
photon pulse experiences the same amount of dispersion before the beam splitter. Moreover, our
theoretical analyses show that this dispersion cancellation effect can be applied to multi-path
linear interferometer with multiple independent single photons which is used to implement a
unitary transformation on single photons for the purpose of realizing quantum gates [36,37] for
photonic quantum computation [12,13,38,39] and experimental boson sampling [40–42].

2. Experiment

The experimental setup is schematically shown in Fig. 2(a). Femtosecond laser pulses (80 MHz,
780 nm, temporal duration 140 fs) from a Ti:sapphire oscillator are frequency doubled and pump
two 1-mm-thick type-II BBO crystals for the SPDC process. The non-collinear degenerate SPDC
photons have the center wavelength of 780 nm and the heralding photons are detected at the
detectors D1 and D2 after passing through 10 nm full width at half maximum (FWHM) bandpass
filters (BF). The two independent heralded single photons pass through the single-mode optical
fibers having the same group velocity dispersion β and lengths of L1 and L2. The single photons
are then injected into the two input ports of a 50/50 beam splitter for the Hong-Ou-Mandel
type two-photon interference measurement. Finally, heralded single photons are detected at the
detectors D3 and D4 after passing through BFs. We observed the two-photon interference pattern
between the two heralded single photons by monitoring the four-fold coincidence count rates as a
function of the relative optical time delay τ in the two arms.

Since we make use of type-II SPDC for the photon pair generation, the signal and idler photons
of SPDC have a specific frequency correlation or joint spectral intensity (JSI) as shown in
Fig. 2(b). So, the 10 nm FWHM BFs placed in front of the heralding detectors D1 and D2 will
cause tracing out of the idler photon spectral modes, resulting in spectrally mixed heralded single
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Fig. 2. (a) Schematic of the experiment. Two independent heralded single photons are
prepared via the SPDC process and sent to a beam splitter (BS) after passing through the
optical fibers of lengths L1 and L2. The group velocity dispersion of the optical fiber is β.
(b) Calculated joint spectral intensity (JSI) of the SPDC photon pair. The yellow dashed
ellipse represents the JSI when the heralded single photons are filtered by 1 nm FWHM
bandpass filters (BF) while the heralding photons are filtered by 10 nm FWHM BFs. (c)
With the heralded single photon bandwidth set at 1 nm FWHM, even with L1 = L2 = 6 m,
we observe high visibility quantum interference of 97%. This is due to the fact that single
photons of 1 nm bandwidth do not produce significant pulse broadening. For (c), the average
pump power of 150 mW is used and the average background noise counts coming from the
multiple pairs of SPDC photons is 251 for accumulation time of 100 s. The solid circles are
the normalized four-fold coincidence count rates and the solid line represents Gaussian fits
to the data points.
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Fig. 3. Experimental results confirming dispersion cancellation in a two-photon quantum
interferometer with independent heralded single photons. The bandwidths of the heralded
single photons are set at 10 nm. (a) When the optical fibers are of the same lengths,
L1 = L2 = 6 m, the group dispersion effects to the single photon is not observed in the
two-photon quantum interference. (b) Even when the optical fiber lengths are increased
to L1 = L2 = 28 m, two-photon quantum interference do not exhibit the group velocity
dispersion effects. (c) When the lengths are different, L1 = 6 m, L2 = 3.5 m, the group
velocity dispersion effects are clearly seen with the broadening of the two-photon interference
dip and reduction of the visibility. The solid circles are the normalized four-fold coincidence
count rates and the solid lines represent Gaussian fits to the data points. The average
pump power of 50 mW is used for these experiments and the average background noise
counts coming from the multiple pairs of SPDC photons are (a) 76, (b) 21, and (c) 50 for
accumulation time of 30 s. The dashed lines show the results of the theoretical calculation
of the two-photon interference.

photon states for the signal photons. First, to ensure that the experimental setup is properly
aligned, the BFs in front of the detectors D3 and D4 are set at 1 nm FWHM. The yellow dashed
ellipse in Fig. 2(b) represents the JSI when the heralded single photons are filtered by 1 nm
FWHM BFs while the heralding photons are filtered by 10 nm FWHM BFs. It is clear that
the filtering process has removed frequency correlation between the signal and idler photons,
allowing us to prepare spectrally pure heralded single-photon states. Then, with the lengths of
the optical fibers set at L1 = L2 = 6 m, we observe the four-fold coincidence count rates as a
function of the optical delay τ. The results of this experiment is shown in Fig. 2(c). With the
heralded single photon bandwidth set at 1 nm FWHM, even with L1 = L2 = 6 m, we observe
high visibility quantum interference of 97%. This is due to the fact that single photons of 1 nm
bandwidth do not produce significant pulse broadening. In order to estimate the background
noise counts coming from the multiple pairs of SPDC photons which will lead to the erroneous
heralding rates, we additionally measured the four-fold coincidence count rates by blocking one
of the SPDC sources and then by blocking the other SPDC source.

To add noticeable dispersion effects to the heralded single photons for the optical fiber used in
the experiment, it is necessary for us to change the lengths (L1 and L2) and the bandwidths of
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the single photons. Note that, for the fused silica core of the optical fiber, the group velocity
dispersion parameter β at 780 nm is 37.802 fs2/mm. First, the bandwidths of the heralded single
photons are changed to 10 nm by using 10 nm FWHM BFs in front of detectors D3 and D4. Then
the two-photon interference measurement is carried out by interfering two independent single
photons by passing them through optical fibers of different lengths (L1 and L2).

The experimental results confirming dispersion cancellation in a quantum interferometer with
independent heralded single photons are shown in Fig. 3. First, the lengths of the optical fibers
are set at L1 = L2 = 6 m. In this condition, the 10 nm bandwidth single photon pulse is expected
to broadened to 9.84 ps in time. However, the data in Fig. 3(a) show clearly that the group velocity
dispersion effect has been cancelled out: the FWHM width of the two-photon interference dip
is 0.34 ps, significantly smaller than the expected pulse broadening. The two-photon visibility
is 70.4% in Fig. 3(a) which is smaller than that of Fig. 2(c), but this is unrelated to the group
velocity dispersion effect. Rather, the reduced visibility is attributed to the frequency correlation
nature of SPDC photons used in the experiment. While the increased single photon bandwidths
of 10 nm do provide large enough bandwidths for noticeable pulse broadening, it also introduces
unwanted spectral correlation between the heralding and the heralded photons, causing reduction
of two-photon interference visibility [43,44]. Second, the lengths of the optical fibers are now
set at L1 = L2 = 28 m and, in this condition, the 10 nm bandwidth single photon pulse is
expected to broadened to 45.9 ps in time. However, the experimental data shown in Fig. 3(b)
clearly demonstrate that the dispersion effect has been cancelled out: the FWHM width of the
two-photon interference dip is 0.35 ps, similarly to Fig. 3(a). The two-photon interference
visibility is slightly reduced to 67.4% from 70.4% of Fig. 3(a) for the same reason mentioned
above. Finally, when the lengths of the optical fibers are different, L1 = 6 m, L2 = 3.5 m, the
effects of dispersion show up immediately, see Fig. 3(c): the FWHM width of the two-photon
interference dip is broadened to 1.28 ps and the visibility has been significantly lowered to 22.9%.
Note that for the case of L1 = 6 m, L2 = 3.5 m, the optical fiber length difference between the two
arms is compensated by the additional free space path so that the single photons from the both
arms arrive simultaneously at the beam splitter.

The experimental results in Fig. 3 make it clear that, when two independent single photons
experience different amount of dispersion, the effects of dispersion appear at two-photon quantum
interference. However, when the two photons experience the same amount of dispersion, the
dispersion effect is cancelled out completely, exhibiting the same two-photon interference feature
as if there had been no dispersion induced pulse broadening.

3. Theory

3.1. Dispersion cancellation with two independent single photons

In order to describe the dispersion cancellation effect on the two-photon interference theoretically,
we begin our study by writing the SPDC two-photon state in the Schmidt decomposed form
which is useful for describing the heralded single photon state [43],

|Ψj⟩ =

∫ ∫
dωsdωifj(ωs,ωi)eiθj(ωs)â†sj (ωs)â†ij (ωi)|0⟩

=
∑︂

n

√︁
λj,n

∫
dωsϕj,n(ωs)eiθj(ωs)â†sj (ωs)

∫
dωiψj,n(ωi)â†ij (ωi)|0⟩

(1)

where j = 1(2) stands for the indices of the first (second) SPDC process and â†sj (ωs) and â†ij (ωi)

are the creation operators for signal and idler photons with frequencies ωs and ωi. Here, we
assume that the signal photon is heralded and passes through the dispersive medium of length Lj,
so we have introduced the signal photon phase θj(ωs) to reflect the group velocity dispersion
βj as θj(ωs) =

1
2Ljβjω

2
s . The terms ϕj,n(ωs) and the ψj,n(ωi) are the Schmidt modes defined by
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Schmidt decompositions of the joint spectral intensities, fj(ωs,ωi) =
∑︁

n
√︁
λj,nϕj,n(ωs)ψj,n(ωi)

where λj,n is the Schmidt eigenvalue. The heralding process will make the two-photon state into
the reduced state in the density matrix form,

ρsj = Tri[|Ψj⟩⟨Ψj |] =
∑︂

n
λj,n |ϕj,n⟩⟨ϕj,n | (2)

where |ϕj,n⟩ =
∫

dωϕj,n(ω)e−iθj(ω)â†sj (ω)|0⟩. Then, the two independent heralded single photon
states before the beam splitter is described as

ρin = ρs1 ⊗ ρs2 =
∑︂
nn′

λ1,nλ2,n′(|ϕ1,n⟩|ϕ2,n′⟩)(⟨ϕ1,n |⟨ϕ2,n′ |). (3)

After applying the relative optical time delay τ and the beam splitter unitary transformation
of the creation operators, the output state ρout can be obtained. The coincidence probability P,
between the two detectors D3 and D4 is given as

P = Tr[ρoutP̂D3 ⊗ P̂D4 ]

=
1
2
−

1
2

∑︂
nn′

λ1,nλ2,n′

×

∫
dωϕ1,n(ω)ϕ

∗
2,n′(ω)e

1
2 i(β1L1−β2L2)ω

2
eiωτ

∫
dω′ϕ∗1,n(ω

′)ϕ2,n′(ω
′)e−

1
2 i(β1L1−β2L2)ω

′2
e−iω′τ

(4)
where P̂Dk is the detection projector, P̂Dk =

∫
dωb̂†sk (ω)|0⟩⟨0|b̂sk (ω) on the output mode of the

beam splitter b̂†sk .
If one postulates a pure state of the heralded single photon without changing the spectrum, it

can be obtained by summing up the all Schmidt modes after multiplying the Schmidt eigenvalues,
ϕ̃j =

∑︁
n λj,nϕj,n(ωs). By substituting the transformed Schmidt mode to the Eq. (2), the coincidence

probability can be obtained with the pure state which has Schmidt number of unity satisfying
λ1,n = λ2,n′ = 1, but the spectrum of photon remains same. In general, however, the Schmidt
decomposition cannot be done analytically. So, we numerically calculated joint spectral intensity
which is the product of the pump spectral profile and the phase matching function of the nonlinear
crystal and computed its singular value decomposition, which is the matrix analogue of the
Schmidt decomposition. From the Eq. (4), one can easily find that the dispersion effect is
perfectly cancelled out when β1L1 = β2L2 is satisfied. In addition, if one assumes that the two
independent single-photons have the same spectral function ϕ1 = ϕ2, which corresponds to the
case in our experiment, the coincidence probability can be simplified as

P(τ → 0) =
1
2
−

1
2

∑︂
nn′

λ1,nλ1,n′

∫
dωϕ1,n(ω)ϕ

∗
1,n′(ω)

∫
dω′ϕ∗1,n(ω

′)ϕ1,n′(ω
′)

=
1
2
−

1
2

∑︂
nn′

λ1,nλ1,n′

∫
dωϕ1,n(ω)ϕ

∗
1,n′(ω)δnn′

=
1
2
−

1
2

∑︂
n
λ1,n

2,

(5)

when the time delay τ goes to zero. As the purity of the heralded single-photon is given by
Tr[ρsj

2] =
∑︁

n λj,n
2, the coincidence probability is only determined by the spectral purity of the

single-photon when the dispersion is cancelled out.
In our experiment, especially, we used the identical optical fibers for dispersive media, thus

dispersion cancellation only depends on the optical fiber length difference between two optical
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fibers, L1 −L2. By following the Eq. (4), we calculate the coincidence probability as a function of
τ as shown in Fig. 3 (dashed lines) and it is in good agreement with the experimental observations.
In addition, to examine the effects of dispersion, we calculated the visibility and FWHM width of
the two-photon interference dip as a function of the optical fiber length difference as shown in
Fig. 4. Solid lines show the theoretical calculation following the experimental conditions where
the heralded single photons are filtered by 10-nm FWHM bandwidth filters, so the single photon
states are in the spectrally mixed state. As the optical fiber length difference is increased, the
visibility is decreased and the FWHM bandwidth becomes broadened which results from the
dispersion effect. If the heralded single photon states are in the spectrally pure state where the
single photon has the same spectrum with the experimental condition, the dispersion is cancelled
out and show the visibility of a unity when the optical fiber length difference is zero, but it shows
the same tendency as the optical fiber length difference is increased (see the dashed lines in
Fig. 4).

Fig. 4. Theoretical visibility and FWHM widths of the two-photon interference dip
between two independent heralded single photons as a function of the optical fiber lengths
difference. The solid lines show the theoretical results using the experimental condition
when the heralded single photons are in spectrally mixed states. The dashed lines show the
theoretical results for the heralded single photons in the spectrally pure states having the
same bandwidths. The solid circles show the experimental data. The error bars represent one
standard deviation, calculated from Poissonian counting statistics of the detection events.

3.2. Dispersion cancellation in a three-photon quantum interferometer

It is also interesting to consider the dispersion cancellation effect for the multi-path linear
interferometer with N independent single photons. For instance, let us consider the scheme
shown in Fig. 5 in which a single photon is injected into each input mode of a 3 × 3 linear
interferometer which contains some dispersion elements. The single photon is assumed to be in
a spectrally pure state described as,

|ϕ⟩a,b,c =

∫
dωϕa,b,c(ω)â†a,b,c(ω)|0⟩, (6)

where ϕa,b,c(ω) is the spectral function and â†a,b,c(ω) is the creation operator for photons of modes
a, b, and c. Then, the total quantum state of the three single photons before arriving at the 50/50
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beam splitter BS1 is described as

|ψin
BS1⟩abc =

∫
dω1ϕa(ω1)â†a(ω1)eiθ1(ω1)

∫
dω2ϕb(ω2)â†b(ω2)eiθ2(ω2)

×

∫
dω3ϕc(ω3)â†c(ω3)eiθ3(ω3) |0⟩abc,

(7)

for θi(ω) =
1
2Liβiω

2 where βi is the group velocity dispersion and Li is the length of dispersive
media. After passing through BS1, the creation operators transform accordingly, â†a(ω) →
1√
2
(â†a(ω) + â†b(ω)) and â†b(ω) →

1√
2
(â†a(ω) − â†b(ω)), thus the output state after BS1 becomes

|ψout
BS1⟩abc =

1
2

∫
dω1ϕa(ω1)eiθ1(ω1)

∫
dω2ϕb(ω2)eiθ2(ω2)

∫
dω3ϕc(ω3)eiθ3(ω3)

×

[︃
â†a(ω1)â†a(ω2) + â†a(ω2)â†b(ω1) − â†a(ω1)â†b(ω2) − â†b(ω1)â†b(ω2)

]︃
â†c(ω3)|0⟩abc.

(8)
Another dispersive medium located between two BSs makes a transformation of the creation

operator of mode a as â†a(ω) → â†a(ω)eiθ12(ω) and the total quantum state becomes

|ψout
BS1⟩abc =

1
2

∫
dω1ϕa(ω1)eiθ1(ω1)

∫
dω2ϕb(ω2)eiθ2(ω2)

∫
dω3ϕc(ω3)eiθ3(ω3)

×

[︃
â†a(ω1)â†a(ω2)eiθ12(ω1)eiθ12(ω2) + â†a(ω2)â†b(ω1)eiθ12(ω2) − â†a(ω1)â†b(ω2)eiθ12(ω1)

− â†b(ω1)â†b(ω2)

]︃
â†c(ω3)|0⟩abc.

(9)
After passing through BS2, the creation operators again transform accordingly, â†a(ω) →

1√
2
(â†a(ω) + â†c(ω)) and â†c(ω) → 1√

2
(â†a(ω) − â†c(ω)).

Fig. 5. Schematic of a multi-path quantum interferometer with three single photons and
four dispersive media. Under specific sets of conditions, full dispersion cancellation for
three-photon quantum interference can be achieved. Calculations show that the easiest way
to achieve full dispersion cancellation for three-photon quantum interference is to satisfy the
following conditions: β1L1 = β2L2 & β1L1 + β12L12 = β3L3.



Research Article Vol. 29, No. 2 / 18 January 2021 / Optics Express 2356

Finally, the output state of the 3 × 3 quantum interferometer is given as,

|ψout
BS2⟩abc =

1
2

∫
dω1

∫
dω2

∫
dω3ϕa(ω1)ϕb(ω2)ϕc(ω3)ei(θ1(ω1)+θ2(ω2)+θ3(ω3))

×

[︃
1
2
(â†a(ω1) + â†c(ω1))(â†a(ω2) + â†c(ω2))ei(θ12(ω1)+θ12(ω2))

+
1
√

2
(â†a(ω2) + â†c(ω2))â†b(ω1)eiθ12(ω2) −

1
√

2
(â†a(ω1) + â†c(ω1))â†b(ω2)eiθ12(ω1)

− â†b(ω1)â†b(ω2)

]︃
×

1
√

2
(â†a(ω3) − â†c(ω3))|0⟩abc.

(10)
The coincidence probability P, among the three detectors Da, Db, and Dc is given as

P = abc⟨ψ
out
BS2 |P̂a ⊗ P̂b ⊗ P̂c |ψ

out
BS2⟩abc, (11)

where P̂i is the projector defined as P̂i =
∫

dωâ†i (ω)|0⟩ii⟨0|âi(ω) on the output mode i = a, b, c.
Calculating Eq. (11) by substituting Eq. (10) leads to the coincidence probability,

P =
1
16

[︃
4 − 4

|︁|︁|︁|︁ ∫ dωϕa(ω)ϕ
∗
b(ω)e

i(θ1(ω)−θ2(ω))

|︁|︁|︁|︁2 − 2
|︁|︁|︁|︁ ∫ dωϕb(ω)ϕ

∗
c(ω)e

i(θ2(ω)−θ3(ω)+θ12(ω))

|︁|︁|︁|︁2
− 2

|︁|︁|︁|︁ ∫ dωϕc(ω)ϕ
∗
a(ω)e

i(θ3(ω)−θ1(ω)−θ12(ω))

|︁|︁|︁|︁2 + 2
∫

dωϕa(ω)ϕ
∗
b(ω)e

i(θ1(ω)−θ2(ω))

×

∫
dωϕb(ω)ϕ

∗
c(ω)e

i(θ2(ω)−θ3(ω)+θ12(ω))

∫
dωϕc(ω)ϕ

∗
a(ω)e

i(θ3(ω)−θ1(ω)−θ12(ω))

+ 2
∫

dωϕ∗a(ω)ϕb(ω)e−i(θ1(ω)−θ2(ω))

∫
dωϕ∗b(ω)ϕc(ω)e−i(θ2(ω)−θ3(ω)+θ12(ω))

×

∫
dωϕ∗c(ω)ϕa(ω)e−i(θ3(ω)−θ1(ω)−θ12(ω))

]︃
.

(12)
If the single photons initially have the identical spectra, the coincidence probability P is

calculated to be

P =
1
16

[︃
4 − 4

|︁|︁|︁|︁ ∫ dω |ϕ(ω)|2ei(θ1(ω)−θ2(ω))

|︁|︁|︁|︁2 − 2
|︁|︁|︁|︁ ∫ dω |ϕ(ω)|2ei(θ2(ω)−θ3(ω)+θ12(ω))

|︁|︁|︁|︁2
− 2

|︁|︁|︁|︁ ∫ dω |ϕ(ω)|2ei(θ3(ω)−θ1(ω)−θ12(ω))

|︁|︁|︁|︁2 + 2
∫

dω |ϕ(ω)|2ei(θ1(ω)−θ2(ω))

×

∫
dω |ϕ(ω)|2ei(θ2(ω)−θ3(ω)+θ12(ω))

∫
dω |ϕ(ω)|2ei(θ3(ω)−θ1(ω)−θ12(ω))

+ 2
∫

dω |ϕ(ω)|2e−i(θ1(ω)−θ2(ω))

∫
dω |ϕ(ω)|2e−i(θ2(ω)−θ3(ω)+θ12(ω))

×

∫
dω |ϕ(ω)|2e−i(θ3(ω)−θ1(ω)−θ12(ω))

]︃
.

(13)

Since the optical delays are assumed to be matched, if the dispersion effects are fully cancelled
out, the coincidence probability P should become zero. To figure out the conditions for dispersion
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cancellation, we first assume θ1(ω) = θ2(ω) at which case the coincidence probability is given by

P =
1
8
[−|

∫
dω |ϕ(ω)|2ei(θ1(ω)−θ3(ω)+θ12(ω)) |2 − |

∫
dω |ϕ(ω)|2ei(θ3(ω)−θ1(ω)−θ12(ω)) |2

+

∫
dω |ϕ(ω)|2ei(θ1(ω)−θ3(ω)+θ12(ω))

∫
dω |ϕ(ω)|2ei(θ3(ω)−θ1(ω)−θ12(ω))

+

∫
dω |ϕ(ω)|2e−i(θ1(ω)−θ3(ω)+θ12(ω))

∫
dω |ϕ(ω)|2e−i(θ3(ω)−θ1(ω)−θ12(ω))].

(14)

From the above equation, it is found that P goes to zero for the condition θ1(ω)+θ12(ω) = θ3(ω).
Therefore, we find that there is a condition for dispersion cancellation for a three-photon quantum
interferometer: β1L1 = β2L2&β1L1 + β12L12 = β3L3. The condition for dispersion cancellation
in the case of the four-photon quantum interferometer is also shown in Appendix. Similarly, the
condition for dispersion cancellation in the case of the N-photon quantum interferometer can be
found.

3.3. Dispersion cancellation in an N-photon quantum interferometer

In this section, we consider the case where there are N independent but identically-prepared
single photons at the input of a specific form of the N × N interferometer within which there are
dispersive elements as shown in Fig. 6.

Fig. 6. Schematic of the simplest multi-path quantum interferometer with N single
photons. Under specific sets of condition, full dispersion cancellation for N-photon quantum
interference can be achieved.

The total quantum state before arriving at the BS1 is described as

|ϕin
BS1⟩ =

∫ N∏︂
j=1

dωjϕ(ωj)â†j (ωj)eiθj(ωj) |0⟩. (15)

Each time the photons pass through BSs, the creation operators transform accordingly,
â†1(ω) →

1√
2
(eiθ1j(ω)â†1(ω) + â†j (ω)) and â†j (ω) →

1√
2
(eiθ1j(ω)â†1(ω) − â†j (ω)) for j = 2, . . . , N − 1,

and after passing through the last BS, the creation operators transform accordingly, â†1(ω) →
1√
2
(â†1(ω) + â†N(ω)) and â†N(ω) →

1√
2
(â†1(ω) − â†N(ω)).

Then, the output state of the N × N quantum interferometer and the coincidence probability can
be obtained by following the calculation strategy shown in Subsection 3.2 and Appendix. Finally,
it can be found that the dispersion cancellation effect where the coincidence probability becomes
zero can be achieved for N-photon quantum interferometer: β1L1 = β2L2 & β1L1+ β12L12 = β3L3
& · · · & β1L1 +

∑︁N
j=2 β1jL1j = βNLN .
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4. Conclusion

In conclusion, we have experimentally and theoretically investigated the dispersion effect on
quantum interference between two independent single photons and showed that it is possible
to achieve full dispersion cancellation even with the independent single photons experiencing
heavy group velocity dispersion as long as the photons experience the same amount of dispersion.
We have also shown that the dispersion cancellation in quantum interference can be applied
to N-photon quantum circuits and networks. Since multi-port quantum interferometers are
at the heart of photonic quantum devices for quantum communication, quantum computing,
and quantum simulation, we believe that our work would have wide applicability in quantum
information science.

Note added: A similar dispersion cancellation effect has recently been reported for two laser
wave packets [45].

Appendix

Consider the dispersion cancellation in a four-photon quantum interferometer as shown in Fig. 7
which contains some dispersion elements. The total quantum state of the four single photons
before arriving at the BS1 is described as

|ϕin
BS1⟩abcd =

∫
dω1ϕa(ω1)â†a(ω1)eiθ1(ω1)

∫
dω2ϕb(ω2)â†b(ω2)eiθ2(ω2)

×

∫
dω3ϕc(ω3)â†c(ω3)eiθ3(ω3)

∫
dω4ϕd(ω4)â†d(ω4)eiθ4(ω4) |0⟩abcd

(16)

After passing through the series of BSs, the creation operators transform successively, (i)
â†a(ω) → 1√

2
(eiθ12(ω)â†a(ω) + â†b(ω)) and â†b(ω) → 1√

2
(eiθ12(ω)â†a(ω) − â†b(ω)), (ii) â†a(ω) →

1√
2
(eiθ13(ω)â†a(ω) + â†c(ω)) and â†c(ω) → 1√

2
(eiθ13(ω)â†a(ω) − â†c(ω)), (iii) â†a(ω) → 1√

2
(â†a(ω) +

â†d(ω)) and â†d(ω) →
1√
2
(â†a(ω) − â†d(ω)).

Fig. 7. Schematic of a multi-path quantum interferometer with four single photons and
six dispersive media. Under specific sets of conditions, full dispersion cancellation for
four-photon quantum interference can be achieved. Calculations show that the easiest way to
achieve full dispersion cancellation for four-photon quantum interference is to satisfy the
following conditions: β1L1 = β2L2 & β1L1 + β12L12 = β3L3 & β1L1 + β12L12 + β13L13 =
β4L4.
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Finally, the output state of the 4 × 4 quantum interferometer is given as,

|ϕout
BS3⟩abcd =

1
4

∫
dω1dω2dω3dω4ϕa(ω1)ϕb(ω2)ϕc(ω3)ϕd(ω4)ei(θ1(ω1)+θ2(ω2)+θ3(ω3)+θ4(ω4))

×

[︃
1

2
√

2

(︃
1

2
√

2
(â†a(ω1) + â†d(ω1))(â†a(ω2) + â†d(ω2))(â†a(ω3) + â†d(ω3))ei(θ13(ω1)+θ13(ω2)+θ13(ω3))

+
1
2
(â†a(ω1) + â†d(ω1))(â†a(ω3) + â†d(ω3))â†c(ω2)ei(θ13(ω1)+θ13(ω3))

+
1
2
(â†a(ω2) + â†d(ω2))(â†a(ω3) + â†d(ω3))â†c(ω1)ei(θ13(ω2)+θ13(ω3))

+
1
√

2
(â†a(ω3) + â†d(ω3))â†c(ω1)â†c(ω2)eiθ13(ω3)

)︃
× ei(θ12(ω1)+θ12(ω2))

+
1
2

(︃
1
2
(â†a(ω2) + â†d(ω2))(â†a(ω3) + â†d(ω3))â†b(ω1)ei(θ13(ω2)+θ13(ω3))

+
1
√

2
(â†a(ω3) + â†d(ω3))â†b(ω1)â†c(ω2)eiθ13(ω3)

)︃
× eiθ12(ω2)

−
1
2

(︃
1
2
(â†a(ω1) + â†d(ω1))(â†a(ω3) + â†d(ω3))â†b(ω2)ei(θ13(ω1)+θ13(ω3))

+
1
√

2
(â†a(ω3) + â†d(ω3))â†b(ω2)â†c(ω1)eiθ13(ω3)

)︃
× eiθ12(ω1)

−
1
2
(â†a(ω3) + â†d(ω3))â†b(ω1)â†b(ω2) × eiθ13(ω3)

−
1

2
√

2

(︃
1
2
(â†a(ω1) + â†d(ω1))(â†a(ω2) + â†d(ω2))â†c(ω3)ei(θ13(ω1)+θ13(ω2))

+
1
√

2
(â†a(ω1) + â†d(ω1))â†c(ω2)â†c(ω3)eiθ13(ω1)

+
1
√

2
(â†a(ω2) + â†d(ω2))â†c(ω1)â†c(ω3)eiθ13(ω2)

+ â†c(ω1)â†c(ω2)â†c(ω3)

)︃
× ei(θ12(ω1)+θ12(ω2))

−
1
2

(︃
1
√

2
(â†a(ω2) + â†d(ω2))â†b(ω1)â†c(ω3)eiθ13(ω2) + â†b(ω1)â†c(ω2)â†c(ω3)

)︃
× eiθ12(ω2)

+
1
2

(︃
1
√

2
(â†a(ω1) + â†d(ω1))â†b(ω2)â†c(ω3)eiθ13(ω1) + â†b(ω2)â†c(ω1)â†c(ω3)

)︃
× eiθ12(ω1)

+
1
√

2
â†b(ω1)â†b(ω2)â†c(ω3)

]︃
(â†a(ω4) − â†d(ω4))|0⟩abcd

(17)
The coincidence probability P, among the four detectors Da, Db, Dc, and Dd is given as

P = abcd ⟨ψ
out
BS2 |P̂a ⊗ P̂b ⊗ P̂c ⊗ P̂d |ψ

out
BS2⟩abcd. (18)
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Calculating Eq. (18) by substituting Eq. (17) leads to the coincidence probability,

P =
1

128

[︃
8 − 4

|︁|︁|︁|︁ ∫ dω |ϕ(ω)|2e−iθ13(ω)e−iθ3(ω)eiθ4(ω)

|︁|︁|︁|︁2 − 8
|︁|︁|︁|︁ ∫ dω |ϕ(ω)|2e−iθ1(ω)eiθ2(ω)

|︁|︁|︁|︁2
+ 4

|︁|︁|︁|︁ ∫ dω |ϕ(ω)|2e−iθ2(ω)eiθ1(ω)

|︁|︁|︁|︁2 × |︁|︁|︁|︁ ∫ dω |ϕ(ω)|2e−iθ4(ω)eiθ3(ω)eiθ13(ω)

|︁|︁|︁|︁2
− 4

|︁|︁|︁|︁ ∫ dω |ϕ(ω)|2e−iθ3(ω)eiθ2(ω)eiθ12(ω)

|︁|︁|︁|︁2
+ 2

∫
dω |ϕ(ω)|2e−iθ3(ω)eiθ2(ω)eiθ12(ω) ×

∫
dω |ϕ(ω)|2e−iθ4(ω)eiθ3(ω)eiθ13(ω)

×

∫
dω |ϕ(ω)|2e−iθ2(ω)eiθ4(ω)e−iθ13(ω)e−iθ12(ω)

+ 4
∫

dω |ϕ(ω)|2e−iθ2(ω)eiθ1(ω) ×

∫
dω |ϕ(ω)|2e−iθ3(ω)eiθ2(ω)eiθ12(ω)

×

∫
dω |ϕ(ω)|2e−iθ1(ω)eiθ3(ω)e−iθ12(ω)

− 2
∫

dω |ϕ(ω)|2e−iθ2(ω)eiθ1(ω) ×

∫
dω|ϕ(ω)|2e−iθ1(ω)eiθ4(ω)e−iθ13(ω)e−iθ12(ω)

×

∫
dω |ϕ(ω)|2e−iθ4(ω)eiθ3(ω)eiθ13(ω) ×

∫
dω |ϕ(ω)|2e−iθ3(ω)eiθ2(ω)eiθ12(ω)

2
∫

dω |ϕ(ω)|2e−iθ4(ω)eiθ1(ω)eiθ13(ω)eiθ12(ω) ×

∫
dω |ϕ(ω)|2e−iθ1(ω)eiθ2(ω)

×

∫
dω |ϕ(ω)|2e−iθ2(ω)eiθ3(ω)e−iθ12(ω) ×

∫
dω |ϕ(ω)|2e−iθ3(ω)eiθ4(ω)e−iθ13(ω)

+ 4
∫

dω |ϕ(ω)|2e−iθ3(ω)eiθ1(ω)eiθ12(ω) ×

∫
dω |ϕ(ω)|2e−iθ1(ω)eiθ2(ω)

×

∫
dω |ϕ(ω)|2e−iθ2(ω)eiθ3(ω)e−iθ12(ω)

+ 2
∫

dω |ϕ(ω)|2e−iθ4(ω)eiθ1(ω)eiθ13(ω)eiθ12(ω) ×

∫
dω |ϕ(ω)|2e−iθ1(ω)eiθ3(ω)e−iθ12(ω)

×

∫
dω |ϕ(ω)|2e−iθ3(ω)eiθ4(ω)e−iθ13(ω)

− 4
|︁|︁|︁|︁ ∫ dω |ϕ(ω)|2e−iθ3(ω)eiθ1(ω)eiθ12(ω)

|︁|︁|︁|︁2
+ 2

∫
dω |ϕ(ω)|2e−iθ4(ω)eiθ1(ω)eiθ13(ω)eiθ12(ω) ×

∫
dω |ϕ(ω)|2e−iθ1(ω)eiθ2(ω)

×

∫
dω |ϕ(ω)|2e−iθ2(ω)eiθ4(ω)e−iθ13(ω)e−iθ12(ω)

− 2
|︁|︁|︁|︁ ∫ dω |ϕ(ω)|2e−iθ4(ω)eiθ1(ω)eiθ13(ω)eiθ12(ω)

|︁|︁|︁|︁2
+ 2

∫
dω |ϕ(ω)|2e−iθ4(ω)eiθ2(ω)eiθ13(ω)eiθ12(ω) ×

∫
dω |ϕ(ω)|2e−iθ2(ω)eiθc(ω)e−iθ12(ω)

×

∫
dω |ϕ(ω)|2e−iθ3(ω)eiθ4(ω)e−iθ13(ω)
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− 2
∫

dω |ϕ(ω)|2e−iθ2(ω)eiθ1(ω) ×

∫
dω |ϕ(ω)|2e−iθ4(ω)eiθ2(ω)eiθ13(ω)eiθ12(ω)

×

∫
dω |ϕ(ω)|2e−iθ1(ω)eiθ3(ω)e−iθ12(ω) ×

∫
dω |ϕ(ω)|2e−iθ3(ω)eiθ4(ω)e−iθ13(ω)

− 2
|︁|︁|︁|︁ ∫ dω |ϕ(ω)|2e−iθ4(ω)eiθ2(ω)eiθ12(ω)eiθ13(ω)

|︁|︁|︁|︁2
+ 2

∫
dω |ϕ(ω)|2e−iθ2(ω)eiθ1(ω) ×

∫
dω |ϕ(ω)|2e−iθ4(ω)eiθ2(ω)eiθ12(ω)eiθ13(ω)

×

∫
dω|ϕ(ω)|2e−iθ1(ω)eiθ4(ω)e−iθ12(ω)e−iθ13(ω)

− 2
∫

dω |ϕ(ω)|2e−iθ3(ω)eiθ1(ω)eiθ12(ω) ×

∫
dω|ϕ(ω)|2e−iθ1(ω)eiθ2(ω)

×

∫
dω |ϕ(ω)|2e−iθ4(ω)eiθ3(ω)eiθ13(ω) ×

∫
dω |ϕ(ω)|2e−iθ2(ω)eiθ4(ω)e−iθ13(ω)e−iθ12(ω)

+ 2
∫

dω |ϕ(ω)|2e−iθ3(ω)eiθ1(ω)eiθ12(ω) ×

∫
dω |ϕ(ω)|2e−iθ4(ω)eiθ3(ω)eiθ13(ω)

×

∫
dω |ϕ(ω)|2e−iθ1(ω)eiθ4(ω)e−iθ13(ω)e−iθ12(ω)

]︃

(19)

under the condition that the single photons have the same spectrum.
Since the optical delays are assumed to be matched, if the dispersion effects are fully cancelled

out, the coincidence probability P should become zero. It is found that P goes to zero for the
conditions θ1(ω) = θ2(ω) and θ1(ω) + θ12(ω) = θ3(ω) and θ1(ω) + θ12(ω) + θ13(ω) = θ4(ω).
Therefore, we find that there is a condition for dispersion cancellation for the four-photon quantum
interferometer: β1L1 = β2L2 & β1L1 + β12L12 = β3L3 & β1L1 + β12L12 + β13L13 = β4L4.
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