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Optimal teleportation via noisy quantum channels without
additional qubit resources
Dong-Gil Im 1, Chung-Hyun Lee1, Yosep Kim 1, Hyunchul Nha2, M. S. Kim3,4, Seung-Woo Lee 5✉ and Yoon-Ho Kim 1✉

Quantum teleportation exemplifies how the transmission of quantum information starkly differs from that of classical information
and serves as a key protocol for quantum communication and quantum computing. While an ideal teleportation protocol requires
noiseless quantum channels to share a pure maximally entangled state, the reality is that shared entanglement is often severely
degraded due to various decoherence mechanisms. Although the quantum noise induced by the decoherence is indeed a major
obstacle to realizing a near-term quantum network or processor with a limited number of qubits, the methodologies considered
thus far to address this issue are resource-intensive. Here, we demonstrate a protocol that allows optimal quantum teleportation via
noisy quantum channels without additional qubit resources. By analyzing teleportation in the framework of generalized quantum
measurement, we optimize the teleportation protocol for noisy quantum channels. In particular, we experimentally demonstrate
that our protocol enables to teleport an unknown qubit even via a single copy of an entangled state under strong decoherence that
would otherwise preclude any quantum operation. Our work provides a useful methodology for practically coping with
decoherence with a limited number of qubits and paves the way for realizing noisy intermediate-scale quantum computing and
quantum communication.
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INTRODUCTION
Quantum teleportation is a process of transmitting an arbitrary
unknown quantum state via a quantum and a classical channel1.
The quantum channel is served by an entangled state shared
between the sender and receiver. This not only exemplifies how
starkly quantum information differs from classical information but
also provides a fundamental building block for various protocols
in both quantum communication2 and quantum computing3,4.
Quantum teleportation was first demonstrated for a photonic
qubit5,6 and optical coherent states7, and later teleportation with
complete Bell-state measurement was demonstrated8. In recent
years, teleportation of photonic qubits over long distances9,10 and
of more complex quantum states have been reported11,12.
Moreover, quantum teleportation has also been demonstrated
for atomic13,14 and solid-state quantum systems15,16. Recently,
CNOT gate teleportation17,18, teleportation for distributed nodes19,
and teleportation for chip-to-chip communication20 have been
demonstrated as potential functionalities for scalable quantum
architectures.
The basic requirement for an ideal teleportation process is a

noiseless quantum channel established by sharing a pure
maximally entangled state such as the Bell state21,22. However,
shared entanglement is often severely degraded in reality due to
various decoherence mechanisms resulting in mixed entangled
states23, seriously deteriorating the performance of the teleporta-
tion as a result. The quantum noises and errors induced by
decoherence are indeed a major obstacle to constructing a
quantum network or connecting components in a scalable
quantum architecture. To that end, entanglement purification
offers a probabilistic method of preparing a pair of qubits with an
increased amount of entanglement, but at the expense of many
identically pre-prepared entangled qubits in conjunction with

local operations and classical communications24–28. A strategy
based on quantum error correction also allows protecting qubits
over a noisy channel but requires many qubits in entangle-
ment29,30. Very recently, classical post-processing has been used
to mitigate the effect of errors in estimating an expectation value
without requiring ancillary qubits31–33; however, such a technique
is not applicable for the transfer of quantum information via a
noisy channel.
In this work, we demonstrate a protocol that allows optimal

quantum teleportation via noisy quantum channels without
additional qubits. In contrast to the previous schemes relying on
entanglement purification or quantum error correction which are
resource-intensive, it is possible in our protocol to teleport an
unknown qubit through a single copy of a decohered entangled
state. By analyzing quantum teleportation via noisy quantum
channels in the framework of generalized quantum measurement,
we find that there exists a joint measurement (analogous to the
Bell-state measurement) and the corresponding single-qubit
reversing operation, which together achieve optimal quantum
teleportation with a substantially enhanced teleportation fidelity.
The reversing operation here is chosen to optimally mitigate the
effect of noise in the quantum channel. In particular, we
experimentally demonstrate that our protocol enables quantum
teleportation even via highly noisy quantum channels (i.e., an
entangled state under strong decoherence) that would otherwise
preclude any quantum operations.

RESULTS
Protocol
Consider the schematic of quantum teleportation via noisy
quantum channels as shown in Fig. 1. Alice has an arbitrary
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unknown quantum state ρa which she wishes to transmit to Bob
without physically transporting the qubit. An entangled state
Ψj iAB is distributed to Alice and Bob via noisy quantum channels,
resulting in sharing a mixed entangled state Eð Ψj iAB Ψh jÞ, where
E ¼ fÊkg represents the decoherence channel with Ê

k
denoting

the Kraus operator for the noise operation. For teleportation, Alice
performs joint measurement on the basis f Wrj iaAg on qubit a with
the state ρa and qubit A of the mixed entangled state Eð Ψj iAB Ψh jÞ
shared between Alice and Bob. In the framework of generalized
quantum measurement, the noisy channel and the joint
measurement together constitute an effective generalized quan-
tum measurement. That is, after the joint measurement, the
reduced state in mode B can be written as

aA Wrh jρa � E Ψj iAB Ψh j� �
Wrj iaA ¼ P

k
M̂

k
r;a!B ρaM̂

k
r;a!By ; (1)

for the outcome r. Here, we define an effective operator

M̂
k
r;a!B � aA Wrh jÊk Ψj iAB, satisfying the completeness relation,

P
r;kM̂

ky
r M̂

k
r ¼ 1, to represent quantum measurement whose input

(a) and output (B) modes are spatially separated. The measure-
ment outcome r is then sent to Bob via a classical channel and Bob
performs an appropriate reversing operation R̂

r
B to obtain an

output state ρB, i.e., R̂
r
Bð
P

kM̂
k
r;a!BρaM̂

k
r;a!By ÞR̂

r
By / ρB. Here, the

reversing operation is designed to reverse the effective quantum
measurement by a non-unitary operation. As the effective
quantum measurement encapsulates the joint measurement and
the entangled state distributed via a noisy quantum channel, the
reversing operation can be optimized relying on the prior
information on the noise affecting the entangled state.
Our teleportation protocol can be thus generally represented by

a quantum measurement Ma→B and its reversal process R, i.e.,
(R∘Ma→B)(ρa)∝ ρB

34,35. This framework encompasses all the pre-
viously proposed teleportation protocols, in which the reversing
operation is limited to a conditional unitary operation R̂

r ¼ Û
r

(referred to as the conventional teleportation protocols in what
follows). It recovers the original teleportation protocol if the joint
measurement is performed on the Bell basis and Bob applies a
conditional Pauli operation.
Our teleportation protocol can be optimized for a given

quantum channel Eð Ψj iAB Ψh jÞ by modifying the joint measure-
ment performed by Alice and the reversing operation performed
by Bob (i) to maximize the average teleportation fidelity F,
indicating the closeness between the input ρa and the teleported

state ρB, and then (ii) to maximize the overall success probability
P as well for the given fidelity (see Supplementary Note 1 for
details). For a noiseless channel, we can always find protocols to

recover the input state faithfully R̂
r
M̂rρM̂ry R̂

ry / ρ, i.e., F= 1. The
protocol can be then optimized such that the success probability
P reaches up to the fundamental limit in terms of the trade-off
relation between P and the amount of extracted information G by
Ma→B, i.e., 6G+ P ≤ 435–39. It implies that the more information is
extracted by Ma→B, the less possible the teleportation succeeds. In
the presence of noise, we optimize the protocol to yield the
maximum teleportation fidelity

F ¼
Z

dψ
X
r

pðr;ψÞ ψh jρBðrÞ ψj i; (2)

where pðr;ψÞ ¼ P
k ψh jM̂k

r;a!ByM̂
k
r;a!B ψj i is the probability obtain-

ing the outcome r and ρB(r) is the output state when the
teleportation succeeds (here we assume a pure input state ψj i for
simplicity, but the definitions are generally valid for any input
state). The teleportation fidelity exceeding the classical limit F > 2/3
ensures genuine quantum teleportation of a qubit via a noisy
channel.
In what follows, we shall first experimentally demonstrate that

our protocol allows the teleportation fidelity F= 1 and saturates
the trade-off relation, 6G+ P= 4, via noiseless quantum channels.
This demonstration involves a pure non-maximally entangled
state between Alice and Bob. Note that, for a pure non-maximally
entangled channel, the original teleportation protocol does not
yield F= 1. Moreover, probabilistic protocols proposed so far to
achieve F= 1 either uses ancillary qubits40, requires nontrivial joint
measurement41, or is unable to reach the maximum bound of P in
view of 6G+ P= 442. Then, we demonstrate that our protocol
enables quantum teleportation with fidelity beyond the classical
limit even via highly noisy quantum channels that would make it
impossible to perform teleportation with conventional protocols.

Experimental demonstration
The experimental schematic for demonstrating optimal teleporta-
tion via noisy quantum channels is shown in Fig. 2a. Ultrafast
femtosecond laser pulses are used to pump spontaneous
parametric down-conversion (SPDC) processes to prepare a
pair of polarization-entangled photonic qubits in modes A and B
as Ψj iAB ¼ ð 00j iAB þ 11j iABÞ=

ffiffiffi
2

p
43–45 and to prepare a heralded

single-photon polarization state in mode a as

Alice Bob

Classical communication

Decoherence

Joint measurement

Reversing
operation

BAa

Ψ AB

Ψ ΨAB
ᵨa ᵨB

M a→B

R

Fig. 1 Quantum teleportation in the framework of quantum measurement and reversal. The Bell state Ψj iAB is shared between Alice and
Bob via a noisy quantum channel, resulting in a mixed entangled state Eð Ψj iAB Ψh jÞ. Alice wants to teleport ρa to Bob. The noisy channel and
the joint measurement together constitute an effective generalized quantum measurement (Ma→B). Conditioned on the outcome of the
effective quantum measurement on Alice’s qubits, an appropriate reversing operation (R) is applied to Bob’s qubit that ends up in the state
ρB. Appropriate joint measurement and reversing operation enable us to achieve optimal teleportation via highly noisy quantum channels.
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ψj ia ¼ α 0j ia þ β 1j ia37,39. Here, 0j i and 1j i denote the horizontal
and vertical polarization states, respectively. A partial polarizing
beam splitter (PPBS1) is used to prepare a pure non-maximally
entangled state46. In the experiment, we have investigated the
amplitude damping channel as this particular decoherence model
allows us to control the amount of decoherence easily and
accurately for the polarization-entangled state shared between
Alice and Bob47–50. The joint measurement is based on the two-
photon quantum interference of two independent single photons
a and A51,52. Indistinguishability of these photons is the key to the
successful joint measurement and is demonstrated in Fig. 2b via
the high visibility of two-photon interference (visibility of 0.97). For
the joint measurement of the polarization qubits in modes a and
A, similarly to Bell-state measurement8, there are four possible
measurement outcomes r= {1, 2, 3, 4}, see Fig. 2 and Eq. (1), each
corresponding to a specific joint measurement basis Wrj iaA.
Depending on the measurement outcome r, an appropriate
reversing operation should be applied for photon B. See
“Methods” for more details on the experimental setup.
We first describe the experimental demonstration of our

protocol when a pure non-maximally entangled state Ψj iAB ¼
cosðθ=2Þ 00j iAB þ sinðθ=2Þ 11j iAB is shared via a noiseless quantum
channel, where 0 ≤ θ ≤ π/2. In this case, the teleportation fidelity of
unity can be achieved, and while maintaining F= 1 the maximal
success probability P is also attained to saturate the trade-off relation
6G+ P= 438. For instance, consider a measurement outcome
on the basis W1j iaA ¼ cosðϕ=2Þ 00j iaA þ sinðϕ=2Þ 11j iaA. According
to Eq. (1), the effective quantum measurement is given as
M̂1¼aA Wr jΨh iAB ¼ cosðθ=2Þ cosðϕ=2Þ 0j iBa 0h j þ sinðθ=2Þ sinðϕ=2Þ 1j i
Ba 1h j. Then, the corresponding reversing operation is found to be

R̂
1
B ¼ Û

1ðtanðθ=2Þ tanðϕ=2Þ 0j i 0h j þ 1j i 1h jÞ for θ ≤ ϕ. Here, Û
r
is the

unitary operator determined by the measurement outcome r and,
for r= 1, Û

r
is the identity operator. Therefore, the effective

quantum measurement M̂1 and the reversing operation R̂
1
B applied

to the three qubits a, A, and B, respectively, destroys the qubit

state of a photon a and faithfully reconstructs it at photon

B, i.e., R̂
1
BM̂1 ψj ia ¼ sinðθ=2Þ sinðϕ=2Þðα 0j iB þ β 1j iBÞ. In the experi-

ment, the joint measurement basis was chosen to be the Bell
basis by setting ϕ= π/2 to easily satisfy the condition θ ≤ϕ for
arbitrary values of θ (0 ≤ θ ≤ π/2). The reversing operation was
implemented with beam displacers (BD) and half-wave plates
(HWPs). We find the average fidelity as we chose six initial states in
mutually unbiased bases on the Bloch sphere, i.e., 0j i, 1j i,
þj i ¼ ð 0j i þ 1j iÞ= ffiffiffi

2
p

, �j i ¼ ð 0j i � 1j iÞ= ffiffiffi
2

p
, þij i ¼ ð 0j i þ i 1j iÞffiffiffi

2
p

, and �ij i ¼ ð 0j i � i 1j iÞ= ffiffiffi
2

p
53.

In order to experimentally obtain G by the effective quantum
measurement and P by the reversing operation, quantum
teleportation is performed for all four joint measurements (not
simultaneously, but two at a time), see “Methods” for details on
evaluating G and P. Figure 3a shows the experimentally obtained
trade-off relation between G and P for five different pure non-
maximally entangled states. It is clear that our teleportation
protocol saturates the trade-off relation 6G+ P= 4, i.e., is
optimal in the sense that the performance of the teleportation
reaches the fundamental upper bound34. The result demon-
strates that “the more information on the input state is extracted
by Alice, the less possible the teleportation becomes successful”.
The teleportation fidelity, which can be estimated by performing
quantum state tomography (QST) between the input qubit states
in mode a and of the teleported qubit states in mode B, in the
cases of sharing a Bell state or other pure non-maximally
entangled states have also been obtained, see, for example,
Fig. 3b, c. The teleportation fidelity always far exceeds the
classical limit of 2/3: Fig. 3b, c exhibits the average fidelities of
0.938 and 0.915, respectively. Slightly reduced fidelity from the
ideal value of 1 can be attributed to a number of experimental
imperfections, e.g., the fidelity of 0.98 for shared entangled
states, lowered two-photon visibility of 0.97 due to remaining
partial distinguishability of the photons for the joint measure-
ment, and the interferometric reversing operation with the
visibility of 0.96. See Supplementary Note 2 for further details.

Fig. 2 Experimental schematic. a Schematic of the experimental setup. The initial polarization qubit is prepared by the heralded single-
photon source in mode a. The polarization-entangled Bell state is prepared in modes A and B via spontaneous parametric down-conversion.
A partial polarizing beam splitter (PPBS1) is used to prepare a pure non-maximally entangled state. The noisy channel implements amplitude
damping decoherence, but our protocol applies to all other forms of quantum errors. Joint measurement is performed on photon A and
photon a. The reversing operation is appropriately designed for the amplitude damping channel and the joint measurement outcome. The
qubit state at Bob is analyzed via quantum state tomography. BBO barium borate nonlinear crystal, HWP half-wave plate, QWP quarter-wave
plate, IF interference filter, FM flip mirror, BS beam splitter, PBS polarizing beam splitter, PPBS partially polarizing beam splitter, BD beam
displacer. b Two-photon interference (visibility of 0.97) demonstrating indistinguishability between photon A and heralded photon a using
2-nm interference filters. The red solid circles represent fourfold coincidence count rates among detectors D1, D4, DT, and DB for 60 s of
accumulation time. Here, DB is placed in front of PPBS1. The solid line represents the Gaussian fit to the data.
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We now describe the demonstration of the optimal teleportation
via an entangled state under strong decoherence. Here, we consider
the amplitude damping in mode B. Note that this framework is
generally applicable to the decoherence in mode A and also for
the dephasing and depolarizing decoherence34. For this demonstra-
tion, the decoherence channel is inserted in the path of photon
B, at the same time removing PPBS1, see Fig. 2: the mixed
entangled state shared between A and B is given as
ð 00j iAB þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� D

p
11j iABÞðAB 00h j þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� D
p

AB 11h jÞ=2þ ðD=2Þ 10j iAB 10h j,
where D is the degree of decoherence. After the joint measurement
in the basis Wrj iaA with the measurement outcome r, the reversing
operation Û

rð ffiffiffiffiffiffiffiffiffiffiffiffi
1� D

p
0j i 0h j þ 1j i 1h jÞ is applied to optimally recon-

struct the initial state of qubit a at mode B. See “Methods” for further
details.
Figure 4 presents both the theoretically and experimentally

obtained average teleportation fidelities F by varying degrees of
decoherence D. The colored region in Fig. 4 represents the
available teleportation fidelities by our protocol beyond the reach
of the conventional protocols based on the unitary reversing
operation. The experimental results clearly demonstrate that our
protocol enables quantum teleportation even via an entangled
state under strong decoherence that would otherwise preclude
any quantum operations. For instance, if D ≥ 0.5, the mixed
entangled state would not violate Bell’s inequality54. However,
even for very strong decoherence values of D= 0.74 and D=
0.92 shown in Fig. 4, our protocol allows to teleport unknown
quantum states significantly beyond the classical limit F > 2/3.
Note that, for amplitude damping decoherence, our teleportation
protocol achieves even higher teleportation fidelities if Alice and
Bob share a pure non-maximally entangled state. The teleporta-
tion fidelity can be enhanced arbitrarily close to unity by
decreasing the success probability depending on how much

the channel has decohered. The experimental results and detailed
analysis for this specific case are presented in Supplementary
Note 3.

DISCUSSION
We have proposed and experimentally demonstrated a protocol
for optimal quantum teleportation via noisy quantum channels,
which does not require any additional qubits. We have shown that
quantum teleportation can be generally optimized in the frame-
work of generalized quantum measurements and corresponding
reversing operations. This approach allows to teleport an
unknown qubit via a single copy of an entangled state under
strong decoherence that would otherwise preclude any quantum
operations. In particular, we have experimentally demonstrated
that our protocol enables quantum teleportation even through
highly noisy quantum channels, overcoming the limit of the
conventional teleportation protocols based on the unitary
reversing operation.
In order to cope with the effects of noise in the quantum

channel during quantum teleportation, two different approaches
may be considered. One approach is to recover the entangled
state from the effect of noise to carry out the conventional
teleportation protocol. Schemes to recover two-qubit entangle-
ment from the noise in the quantum channel include entangle-
ment distillation/concentration24–26,28, protecting entanglement
by weak measurement and reversal49, and controlling open
quantum system55–57. The other approach is to modify the
teleportation protocol itself to adapt to the noisy quantum
channel40,42. In this work, by analyzing teleportation in the
framework of generalized quantum measurement, we optimize
the teleportation protocol itself for noisy quantum channels41,
offering clear advantages over the above-mentioned approaches.
Unlike entanglement concentration/purification schemes, multiple
copies of identically decohered two-qubit entangled states are not
required and our teleportation protocol achieves optimal quan-
tum teleportation (i.e., saturating the fundamentally achievable
fidelity and maximizing the success probability for a given fidelity)
of an unknown qubit via a single copy of an entangled state under

0.6

0.7

1.0

0.9

0.8

6.00 0.4 0.12.0 0.8

Te
le

po
rta

tio
in

 fi
de

lit
y 

(F
)

Decoherence (D)

Classical limit

Conventional (ideal)

Optimal (ideal)
Optimal (exp.)

Conventional (exp.)

Fig. 4 Experimental result of optimal quantum teleportation via
the noisy quantum channel. Teleportation fidelities achieved over
noisy quantum channels. We here consider the amplitude damping
decoherence on the maximally entangled two-qubit channel. The
solid lines represent the theoretical upper bounds of the average
fidelities for our protocol (red) and the conventional teleportation
protocol (blue) based on the unitary reversing operation, respec-
tively, while the dashed lines are drawn, including experimental
imperfections. The colored region represents the available tele-
portation fidelities by our protocol beyond the reach of convention
teleportation protocols. The red solid circles are the experimental
data based on our protocol, with the error bars representing one
standard deviation. The results clearly demonstrate that our
protocol enables teleportation even via a single copy of an
entangled state under strong decoherence that would otherwise
preclude any quantum operations.

Fig. 3 Experimental result of optimal quantum teleportation via
the noiseless quantum channel. a The success probability of
teleportation versus the information gain by Alice. Red solid line
represents the ideal trade-off relation and red solid circles show the
values for pure non-maximally entangled states shown in the inset.
The corresponding experimental data are shown with green solid
circles. The error bars represent one standard deviation. Teleportation
fidelity in the case of sharing b the Bell state

ffiffiffiffiffiffiffi
0:5

p
00j i þ ffiffiffiffiffiffiffi

0:5
p

11j i and
c the pure non-maximally entangled state

ffiffiffiffiffiffiffiffiffi
0:56

p
00j i þ ffiffiffiffiffiffiffiffiffi

0:44
p

11j i for
the joint measurement basis W1j iaA ¼ ð 00j i þ 11j iÞ= ffiffiffi

2
p

. The dashed
lines show the classical limit of 2/3.
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strong decoherence that would otherwise preclude any quantum
operations. Similarly to other approaches for tackling decoherence
in quantum information processing, our optimal quantum
teleportation protocol requires prior information of the channel
noise so as to determine proper quantum measurement and
reversing operation: recent advances in quantum process
tomography58,59 and noise characterization techniques60,61 offer
systematic and efficient approaches for obtaining the information
about the quantum noise in the channel.
While there has been immense progress in quantum informa-

tion processing and long-distance quantum communication in
recent years, degradation of entanglement due to noise remains
to be an important issue to address in constructing scalable
quantum systems. Our work provides insights into practically
coping with decoherence with a limited number of qubits and
paves the way for realizing noisy intermediate-scale quantum
technologies. Potential directions of future research include
entanglement-based quantum communication (e.g., long-
distance quantum teleportation, deterministic secure quantum
communication, etc.) and distributed quantum information
processing in a noisy environment.

METHODS
Details on the experimental setup
The SPDC process was pumped by a 390-nm centered ultrafast pulse
(~140 fs) and the central wavelength of the SPDC photons is 780 nm. The
polarization-entangled photonic qubit pair, Ψj iAB ¼ ð 00j iAB þ 11j iABÞ=

ffiffiffi
2

p
,

was then prepared by using two 1-mm thick type-II BBO crystals, in the
frequency-degenerate beamlike SPDC configuration, with a HWP sand-
wiched between them and a set of compensating crystals to remove
spatial and temporal distinguishability43–45. The generated polarization-
entangled qubit pair is shared between Alice and Bob.
The arbitrary initial state ψj ia to be teleported from Alice to Bob was

prepared by using another 1-mm thick BBO crystal in the frequency-
degenerate beamlike SPDC configuration. One photon of the SPDC
photon pair is detected at DT, heralding the presence of a single photon
in mode a. The polarization qubit state for the single photon in mode a,
ψj ia , was then prepared by using the set of HWP and QWP. Joint
measurement of qubits a and A was implemented by two-photon
quantum interference and coincidence detection51,52. To improve
quantum interference, 2 nm full-width at half-maximum interference
filters were used in front of all detectors to further reduce any
remaining spectral/temporal distinguishability between the two single
photons.
The joint measurement between photons a and A, analogous to the

Bell measurement in conventional teleportation protocols, is to be performed
in the following basis set: W1j iaA ¼ cosðϕ=2Þ 00j i þ sinðϕ=2Þ 11j i, W2j iaA ¼
sinðϕ=2Þ 00j i � cosðϕ=2Þ 11j i, W3j iaA ¼ cosðϕ=2Þ 01j i þ sinðϕ=2Þ 10j i, and
W1j iaA ¼ sinðϕ=2Þ 01j i � cosðϕ=2Þ 10j i. In the experiment, by setting the
HWP1 angle in Fig. 2a at φ1= π/4, joint measurement between detectors
D1–D2 or D3–D4 implements aA W1h j measurement and joint measurement
between detectors D1–D3 or D2–D4 implements aA W2h j measurement. For
the remaining two joint measurements aA W3h j and aA W4h j, they are similarly
performed by setting φ1= 0.
The amplitude damping decoherence channel is given by

Eð Ψj iAB Ψh jÞ ¼ Ê
1
Ψj iAB Ψh jÊ1y þ Ê

2
Ψj iAB Ψh jÊ2y, where the Kraus operators

are fÊ1 ¼ 0j i 0h j þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D

p
1j i 1h j; Ê2 ¼ ffiffiffiffiffi

D
p

0j i 1h jg. In experiment, Ê
1
is

implemented by a partial polarizing beam splitter PPBS2 and Ê
2

is
implemented by reflection at PPBS2 and HWP at π/4. Incoherent mixing of
the two processes results in the amplitude damping decoherence channel.
Consider a pure arbitrary entangled state Ψj iAB ¼ cosðθ=2Þ 00j iAB þ

sinðθ=2Þ 11j iAB with 0 ≤ θ ≤ π/2 as the quantum channel, where mode B
experiences the amplitude damping decoherence, and assume that the
joint measurement is performed on the Bell basis (ϕ= π/2). According to
Eq. (1), the effective quantum measurement is then described by a set of

operators:

M̂
1
1 ¼ 1ffiffi

2
p cos θ

2 0j iBa 0h j þ
ffiffiffiffiffiffiffi
1�D
2

q
sin θ

2 1j iBa 1h j

M̂
2
1 ¼

ffiffiffi
D
2

q
sinðθ=2Þ 0j iBa 1h j

M̂
1
2 ¼ 1ffiffi

2
p cos θ

2 0j iBa 0h j �
ffiffiffiffiffiffiffi
1�D
2

q
sin θ

2 1j iBa 1h j

M̂
2
2 ¼ �

ffiffiffi
D
2

q
sinðθ=2Þ 0j iBa 1h j

M̂
1
3 ¼ 1ffiffi

2
p cos θ

2 0j iBa 1h j þ
ffiffiffiffiffiffiffi
1�D
2

q
sin θ

2 1j iBa 0h j

M̂
2
3 ¼

ffiffiffi
D
2

q
sinðθ=2Þ 0j iBa 0h j

M̂
1
4 ¼ � 1ffiffi

2
p cos θ

2 0j iBa 1h j þ
ffiffiffiffiffiffiffi
1�D
2

q
sin θ

2 1j iBa 0h j

M̂
2
4 ¼

ffiffiffi
D
2

q
sinðθ=2Þ 0j iBa 0h j:

(3)

An arbitrary measurement operator can be presented by the singular
value decomposition as M̂r ¼ V̂ r D̂r Ûr with unitary operators, V̂ r and Ûr and
a diagonal matrix D̂r ¼

Pd�1
n¼0 λ

r
n vrn
�� �

vrn
� ��, where f vrn

�� �jn ¼ 0; ¼ ; d � 1g is
the orthonormal basis. Here we assume that, without loss of generality, the
diagonal elements λrn , i.e., singular values are put in decreasing order, i.e.,
λr0 � λr1 � ¼ � λrd�1. The optimal reversing operator is then given by

R̂
r ¼ λrd�1Û

y
r D̂

�1
r V̂

y
r , s.t., R̂

r
M̂r ψj i ¼ λrd�1 ψj i and P ¼ P

rðλrd�1Þ238.
In the presence of noise, the input state ψj i is changed to

P
kM̂

k
r ψj i ψh jM̂ky

r
after the joint measurement as given in Eq. (1). In this case, the optimal

reversing operator for the outcome r is given by R̂
r ¼ λr;kmd�1Û

y
r;km D̂

�1
r;km V̂

y
r;km ,

where km yields the maximum smallest singular value, i.e., λr;kmd�1 � max
k

½λr;kd�1�34.
For the effective quantum measurement in Eq. (3), the optimal reversing

operator is given by the form R̂
r ¼ Û

rðtanðθ=2Þ ffiffiffiffiffiffiffiffiffiffiffiffi
1� D

p
0j i 0h j þ 1j i 1h jÞ,

where Û
r ¼ f̂I; σz ; σx ; σxσzg for r= {1, 2, 3, 4}. In the experiment, as 0j i and

1j i are encoded in the polarization states Hj i and Vj i, respectively, the
reversing operation can be implemented with a Mach–Zehnder inter-
ferometer built with polarization-dependent beam displacers and half-
wave plates as shown in Fig. 2a. The Mach–Zehnder interferometer
implements cos2ð2φ2Þ 0j i 0h j þ 1j i 1h j, where φ2 is the angle of HWP2.

Evaluation of information gain and success probability
Assume a quantum measurement, described by a set of operators fM̂rg,
applied to an arbitrary input state ψj i (a pure input state is considered for
simplicity, but the definition is valid for any mixed states). To quantify the
information gain G, we use the mean estimation fidelity36. In every trial, we
can make a guess that the input state is ϕrj i for the outcome r. The quality
of the guess can be evaluated by j ψjϕrh ij2. By averaging this over all
possible input states and outcomes, we can define the information gain as

G ¼ R
dψ

P
r ψh jM̂y

r M̂r ψj ij ψjϕrh ij2. For the effective measurement in Eq. (3)
with D= 0, the information gain is evaluated as G ¼ ð1þ cos2ðθ=2ÞÞ=3.
In experiment, G is estimated from the fourfold coincidence counts

involving the detector DG, the heralding detector DT, and the joint
measurement detectors shown in Fig. 2a. The probability of state projection

is evaluated from the ratio of fourfold coincidences as ψh jM̂y
r M̂r ψj i=

ðPr ψh jM̂y
r M̂r ψj iÞ, where r= {1, 2, 3, 4}. The quality of guess j ψjϕrh ij2 is

obtained by calculating with the optimal guessing state, i.e., the eigenstate of
a measurement operator corresponding to the largest eigenvalue36. The
average fidelity can be obtained by averaging any six input states forming a
regular octahedron on Bloch sphere53. Here, six input states 0j i, 1j i, þj i, �j i,
þij i, and �ij i are used for evaluating the average fidelity.
In a noiseless scenario, an appropriate reversing operation chosen for

each measurement operator can recover the input state faithfully, s.t.,
R̂
r
M̂r ψj i ¼ ηr ψj i, where ∣ηr∣2 is the success probability for each r. The

maximum overall success probability of reversing operation is then given
by P ¼ max

P
r jηr j2. It was shown that the information gain and the

success probability of reversing operation for a quantum measurement are
in a trade-off relation as d(d+ 1)G+ (d− 1)P ≤ 2d in arbitrary d-dimen-
sional Hilbert space38. For qubits d= 2, it becomes 6G+ P ≤ 4. For the
effective measurement in Eq. (3) with D= 0, the maximum success
probability of reversing operation is obtained as P ¼ 2sin2ðθ=2Þ.
In the experiment, P is estimated from the fourfold coincidence counts

involving the detector DP, the heralding detector DT, and the joint
measurement detectors shown in Fig. 2a. Similarly as before, the
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probability of successful teleportation is evaluated from the ratio of

fourfold coincidences as ψh jM̂y
r R̂

r yR̂
r
M̂r ψj i=ðPr ψh jM̂y

r M̂r ψj iÞ.

Optimal teleportation via noisy quantum channels
Here, we consider optimal teleportation via a maximally entangled
state under amplitude damping decoherence (on mode B). If the joint
measurement is performed on W1j iaA ¼ ð 00j iaA þ 11j iaAÞ=

ffiffiffi
2

p
, the

effective quantum measurement is given as M̂
1
1 ¼ ð 0j iBa 0h j þffiffiffiffiffiffiffiffiffiffiffiffi

1� D
p

1j iBa 1h jÞ=2 and M̂
2
1 ¼ ð ffiffiffiffi

D
p

=2Þ 0j iBa 1h j from Eq. (3). The correspond-

ing reversing operator is R̂
1
B ¼ Û

1ð ffiffiffiffiffiffiffiffiffiffiffiffi
1� D

p
0j i 0h j þ 1j i 1h jÞ, where Û

1 ¼ Î.
Then, the final output state at mode B is given by
ρB ¼ ð1� DÞðα 0j iB þ β 1j iBÞðα�B 0h j þ β�B 1h jÞ=4þ Dð1� DÞjβj2 0j iBB 0h j=4.
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