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Quantum teleportation is a reversal of quantum measurement
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We introduce a generalized concept of quantum teleportation in the framework of quantum measurement and
reversing operation. Our framework makes it possible to find an optimal protocol for quantum teleportation
enabling a faithful transfer of unknown quantum states with maximum success probability up to the fundamental
limit of the no-cloning theorem. Moreover, an optimized protocol in this generalized approach allows us to
overcome noise in quantum channel beyond the reach of existing teleportation protocols without requiring extra
qubit resources. Our proposed framework is applicable to multipartite quantum communications and primitive
functionalities in scalable quantum architectures.
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I. INTRODUCTION

Quantum teleportation is at the core of quantum infor-
mation technologies [1–4]. Ever since the seminal work
by Bennett et al. [5], teleportation has been demonstrated
in various physical platforms [6–15] and many different
protocols have been proposed to date [16–30]. Recently, de-
velopments have been directed to its potential applications
for long-distance quantum communications [31–35], interchip
communications [36], and other versatile functionalities to-
ward scalable quantum architectures [37–39]. Teleportation
makes it possible to transfer an unknown quantum state ρ

from a sender (Alice) to a receiver (Bob) using an entangled
quantum channel. In this protocol, Alice performs a joint
measurement on an input state ρ and her part of the quantum
channel, which results in a reduced state ρ i at Bob’s station
under the measurement outcome i at Alice’s station. To com-
plete the teleportation, Bob applies a conditional operation
according to the outcome i aiming at ρ i → ρ.

A crucial question may arise here: For a given a quantum
channel and Alice’s choice of joint measurement, what is the
optimal operation for Bob to recover the input state ρ? An
ideal teleportation via a maximally entangled quantum chan-
nel transfers the information of input state deterministically
and faithfully, in which Bob’s optimal operation is unitary
[5]. In reality, however, teleportation is frequently affected
by imperfections and noise that cause a leak of information
and the fidelity of the teleported state is inevitably degraded.
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In this respect, applying a unitary operation at the receiver’s
station may not always be optimal in practice. However, exist-
ing teleportation protocols to date conventionally limit Bob’s
operation to unitary [16–30], which would also significantly
limit the fault-tolerance of quantum teleportation.

In this work, we develop a general framework to opti-
mize the teleportation fidelity beyond the reach of existing
teleportation protocols. The general framework is established
from the perspective of quantum measurement and revers-
ing operation. This makes it possible to optimize not only
the sender’s joint measurement but also the receiver’s oper-
ation. The importance of our work is twofold: (i) Our work
extends and generalizes the concept of quantum teleporta-
tion beyond existing protocols. We show that the optimized
protocol in this framework enables a faithful transfer of quan-
tum states with unit fidelity and the success probability up
to the limit given by the no-cloning theorem [40,41]. This
can be further extended to multipartite quantum communi-
cations. (ii) Our framework allows us to transfer quantum
states over noisy quantum channels, overcoming the limit
of existing teleportation protocols. We show that quantum
teleportation is possible even through such a decohered en-
tangled channel that is useless in conventional protocols.
This may be achieved in a probabilistic way. However, the
current technology can generate an entangled channel at a
very high repetition rate [42]. As increasing the fidelity is
critical for many applications, e.g., fault-tolerant distributed
quantum protocols [43,44], a probabilistic scheme may serve
well, particularly if it works in a heralded fashion. More-
over, in contrast with other methods to cope with noise in
a quantum channel such as entanglement distillation [45–48]
and error correction encoding [49–52], our protocol requires
no additional qubits but only to modify the sender’s or re-
ceiver’s operation. Our work constitutes a feasible, resource-
efficient way to mitigate errors while transmitting quantum
information.
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FIG. 1. (a) Conventional quantum teleportation. (b) Quantum
teleportation in the framework of measurement and reversal (MR
framework).

II. GENERAL FRAMEWORK

Let us start by introducing a generalized concept of tele-
portation. We define a quantum teleportation as transmitting
an unknown quantum state by disturbing it with measurement
at one location and reconstructing it with a certain operation
at another location, where two locations are connected via
quantum entanglement. This not only encompasses all exist-
ing teleportation protocols [5,16–30] but also generalizes the
scope of teleportation, as we describe below.

Consider a general scenario of one-to-one teleportation.
Alice performs a joint measurement {�i} (a positive-operator
valued measure, POVM) on the input particle a and her part
ā of the channel state �āb. The (unnormalized) reduced state
can then be written as

ρ̃ i
b = �i

aā(ρa ⊗ �āb) = Mi
a→b(ρ). (1)

Here we define a quantum measurement {Mi
a→b}, which is

nonlocal in the sense that its input a and output b are spatially
separated. More specifically, if we assume a rank-one projec-
tion �i

aā = |vi〉〈vi| and a quantum channel �āb = |�〉〈�| (see
Appendix A 1 for general scenarios), the reduced state can be
written as

ρ̃ i
b = aā〈vi| · ρa ⊗ |�〉āb〈�| · |vi〉aā = M̂iρM̂†

i , (2)

with measurement operators M̂i ≡ aā〈vi|�〉āb satisfying the
completeness condition

∑
i M̂†

i M̂i = 1. Therefore, once the
outcome i is shared with Bob, the reduced state is equivalent
to a postmeasurement state obtained when a quantum mea-
surement M = {M̂i} is performed on ρ at Bob’s location.

A remaining step to complete the teleportation is applying
an appropriate operation to recover ρ. Note that this operation
has been limited to a conditional unitary operation in previous
protocols [5,16–30] as illustrated in Fig. 1(a). In contrast, we
envision an operation R to reverse M such that

(R ◦ M)(ρ) ∝ ρ, (3)

irrespective of ρ, where ∝ implicates that the process can
be probabilistic. For each outcome i of M, Bob can choose
an appropriate operation R = {R̂i

j} to reverse the effect of
measurement M aiming at a final output state

ρ̃ i
j = R̂i

jM̂
iρM̂i†R̂i†

j → ρ. (4)

Note that this framework allows us to modify both Alice’s
joint measurement and Bob’s reversing operation, and if the
reversing operation is limited to unitary, i.e., R̂i = Û i, it
reduces to a conventional teleportation. We put forward the
idea that a teleportation protocol is conceptually equivalent

to a quantum measurement followed by a reversing opera-
tion applied to an unknown quantum state, referred to as the
measurement-reversal (MR) framework hereafter.

This approach is generally valid even under the effect
of noise. Assume an arbitrary noise affecting the quantum
channel (on particle b for simplicity) represented by a set of
operators E = {Êk}. The reduced state (A4) then reads

ρ̃ i
b = aā〈vi|ρa ⊗

∑
k

Êk,b|�〉āb〈�|Ê†
k,b|vi〉aā =

∑
k

M̂i,kρM̂†
i,k,

(5)
where M̂i,k ≡ aā〈vi|Êk,b|�〉āb satisfying

∑
i,k M̂†

i,kM̂i,k =
〈�| ∑i |vi〉〈vi| ⊗ ∑

k Ê†
k Êk|�〉 = 1 is a coarse-grained

quantum measurement that yields the outcome i while
the outcome k is hidden. Thus, a teleportation over a
noisy quantum channel can be addressed in terms of
a coarse-grained quantum measurement and reversing
operation.

The MR framework is also readily extended to multipartite
teleportation [19–23]. Consider an arbitrary number of partic-
ipants; n number of senders (who share a quantum state ρ to
teleport), l number of intermediators (who relay the informa-
tion), and m number of receivers, all of whom are connected
by a quantum channel |�〉. Senders perform a joint measure-
ment on their parts of ρ and |�〉 in the basis |V	v〉, where
	v ≡ (v1, . . . , vn) denotes the outcomes of all senders. On the
other hand, intermediators perform a local measurement on
their parts of |�〉 in the basis |W	w〉, where 	w ≡ (w1, . . . ,wl )
denotes the all local outcomes. The operator for this collective
measurements is given by

M̂	v, 	w ≡ 〈W	w|〈V	v| · |�〉,
∑
	v, 	w

M̂†
	v, 	wM̂	v, 	w = 1. (6)

Given 	v and 	w, receivers can apply appropriate reversing
operations R̂	v, 	w such that R̂	v, 	w

	u M̂	v, 	wρM̂†
	v, 	wR̂	v, 	w†

	u ∝ ρ, where
	u = (u1, . . . , um) denotes the outcomes of the reversing op-
erations and

∑
	u R̂	v, 	w†

	u R̂	v, 	w
	u = 1.

III. PERFORMANCE MEASURES

The performance of teleportation can be assessed in terms
of the teleportation fidelity and the success probability of
the protocol. Consider a protocol described by M = {M̂i,k}
and R = {R̂i

j} to teleport an arbitrary (pure) input state ρ =
|ψ〉〈ψ |. After applying M, the postmeasurement state for out-
come i is ρ i = ∑

k M̂i,k|ψ〉〈ψ |M̂†
i,k/pi(ψ ) with its probability

pi(ψ ) = ∑
k〈ψ |M̂†

i,kM̂i,k|ψ〉. Once R succeeds, which is des-
ignated as j = 1 without loss of generality, the teleported
state is ρ i

j = ∑
k R̂i

jM̂i,k|ψ〉〈ψ |M̂†
i,kR̂i†

j /pi
j (ψ ) with pi

j (ψ ) =∑
k〈ψ |M̂†

i,kR̂i†
j R̂i

jM̂i,k|ψ〉. The teleportation fidelity can then
be evaluated as the average fidelity between the input and
output states from the success event of the teleportation, i.e.,

Ftele =
∫

dψ
∑

i

pi(ψ )〈ψ |ρ i
j=1|ψ〉. (7)

The average success probability is given by

Ptele =
∫

dψ
∑

i

pi
j=1(ψ ). (8)
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Since any leakage of information to senders or intermedi-
ators would degrade the teleportation performance [18], the
maximum amount of extractable information on |ψ〉 by M
is also an important measure to consider. Suppose that Alice
attempts to extract information on |ψ〉 and estimates it as |ψ̃i〉
upon the outcome i using her knowledge over M. Then, the
information gain can be evaluated by the overlap between |ψ〉
and |ψ̃i〉 on average,

GAlice =
∫

dψ
∑

i

∑
k

pi,k (ψ )|〈ψ̃i|ψ〉|2, (9)

with pi,k (ψ ) = 〈ψ |M̂†
i,kM̂i,k|ψ〉 [53]. In multipartite telepor-

tations, the information gain may be evaluated as the total
amount of information extracted by all senders and intermedi-
ators together.

IV. FUNDAMENTAL LIMITS

Now, every trial of teleportation can be seen as a process
that has a single input |ψ〉 and two outputs, i.e., |ψ̃i〉 to Alice
and ρ i

j to Bob. As the estimated state |ψ̃i〉 can be imprinted
onto unlimited number of copies, this process in turn can be
understood as an asymmetric cloning machine (1 → N + 1
where N = ∞) [54]. Thus, the performance of teleportation
is fundamentally restricted by the no-cloning theorem (see
Appendix B).

To find the upper limit of performance, consider an ar-
bitrary measurement M = {M̂i} without a noise channel.
Each measurement operator can be represented by a singular
value decomposition as M̂i = V̂iD̂iÛi with unitary operators
Ûi and V̂i, and a diagonal matrix D̂i = ∑d−1

n=0 λi
n|n〉〈n| with

singular values λi
n in d-dimensional Hilbert space. The in-

formation gain (9) can then be further evaluated as Gmax
Alice =

(d + ∑
i(λ

i
max)2)/d (d + 1) in terms of the largest singular

values λi
max [53] (see Appendix A 2), which is scaled in

the range 1/d � Gmax
Alice � 2/(d + 1). We note that its upper

bound determines the classical limit of teleportation, i.e.,
Fcl = 2/(d + 1). This is because the maximum information
gain by Alice is the maximum amount of information that
can be used in the classical measure-prepare strategy. On the
other hand, the success probability (C3) can be evaluated as
Pmax

tele = ∑
i(λ

i
min)2 in terms of the smallest singular value λi

min
of each M̂i (see Appendix A 2) [40].

Finally, following Ref. [40], we can find the trade-off rela-
tion between the maximum teleportation probability and the
information gain by Alice as

d (d + 1)Gmax
Alice + (d − 1)Pmax

tele � 2d, (10)

which determines the fundamental limit of teleportation per-
formance. It implies that the more information is extracted
during the teleportation, the lower the success probability of
the faithful teleportation. Note that the limit (10) generally
holds for any teleportation protocol.

V. OPTIMAL FAITHFUL TELEPORTATION

We find that any teleportation protocol for an entangled
quantum channel without noise can be optimized to yield the
unit teleportation fidelity Ftele = 1 with the maximum suc-
cess probability Pmax

tele . For each measurement operator M̂i =

V̂iD̂iÛi, we can define a reversing operator R̂i = λi
minÛ †

i D̂−1
i V̂ †

i
such that

R̂iM̂i|ψ〉 = λi
min|ψ〉 ∀ |ψ〉. (11)

It guarantees that an unknown state |ψ〉 can be faithfully
transferred with success probability Pmax

tele = ∑
i(λ

i
min)2. For

instance, consider a teleportation via an entangled chan-
nel |�〉 = cos (θ/2)|00〉 + sin (θ/2)|11〉 with 0 � θ � π/2.
If we fix the joint measurement on the Bell basis for
simplicity (see Appendix C for a general scenario), the
measurement operator in MR framework corresponds to
M̂i = (cos (θ/2)|0〉〈0| + sin (θ/2)|1〉〈1|)Ûi/

√
2, where Ûi ∈

{Î, σ̂z, σ̂x, σ̂xσ̂z}. Its optimal reversing operator is then given
as R̂i = Ûi(tan (θ/2)|0〉〈0| + |1〉〈1|). Hence, Ftele = 1 can be
achieved with probability Pmax

tele = 2 sin2(θ/2) that monoton-
ically increases with the degree of entanglement in quantum
channel E = sin(θ/2). The information gain (9) is Gmax

Alice =
[1 + cos2(θ/2)]/3, so Pmax

tele and Gmax
Alice saturate the upper

bound in Eq. (10). This generally holds for arbitrary multi-
partite teleportation scenarios as we can define a reversing
operator to fulfill (11) for the measurement operator (6). As a
result, it is clear in the MR framework that a faithful telepor-
tation, i.e., Ftele = 1, is always possible over a pure entangled
channel between arbitrary number of participants, achieving
the maximum success probability Pmax

tele .
We note that a faithful teleportation optimized in the MR

framework differs from previously proposed protocols in the
context of conclusive [26–28] or probabilistic teleportation
[29,30]. Such protocols can be optimized by modifying Al-
ice’s joint measurement only, so their implementation as well
as extension to multipartite teleportations is nontrivial. By
contrast, in the MR framework, it is rather straightforward to
identify an optimal protocol, even under the noisy environ-
ment shown later. A teleportation protocol can be optimized
not only by Alice’s joint measurement but also through Bob’s
reversing operation that can be implemented by a single qubit
(qudit) operation. Therefore, an optimal teleportation in MR
framework is readily implementable and generally applicable
to arbitrary multipartite teleportation scenarios. A detailed
comparison is given in Appendix C.

VI. OVERCOMING NOISE IN QUANTUM CHANNEL

We now show that teleportation in MR framework can
overcome the limit of conventional teleportation over noisy
quantum channels. An arbitrary noise affecting the quan-
tum channel can be described by a set of operators E =
{Êk}, the explicit form of which varies by unitary re-
combination (U ) [55]. The corresponding coarse-grained
measurement M = {M̂i,k} can be defined by (5). For each
outcome i, we can consider all corresponding measurement
operators {M̂i,k=1, M̂i,k=2, . . .} and find the maximum among
their smallest singular values {λi,k=1

min , λi,k=2
min , . . .} as λ

i,km
min ≡

maxk,U [λi,k
min]. We then define a reversing operator as

R̂i = λ
i,km
minÛ †

i,km
D̂−1

i,km
V̂ †

i,km
. (12)

As a final step, Bob’s optimal reversing operation is chosen
between a conditional unitary operation in a conventional
scheme and the reversing operator (12) so as to yield the
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FIG. 2. Teleportation fidelities of the protocol optimized in MR
framework under the effect of noise. Fidelities over the classical limit
(Ftele > Fcl = 2/3) are plotted by changing the initial entanglement
degree E and the noise strength D. For comparison, the teleportation
fidelities FU of the conventional protocol based on unitary operations
also are plotted.

maximum teleportation fidelity

Ftele = max [FU ,FR]. (13)

As paradigmatic examples, we consider damping, de-
phasing, and depolarization in the quantum channel |�〉 =
cos (θ/2)|00〉 + sin (θ/2)|11〉 (See Appendix D for details).
In Fig. 2, we plot the maximum teleportation fidelities op-
timized in MR framework against the entanglement degree
of quantum channel E = sin(θ/2) and the noise strength
D. The result shows that the optimal teleportation in MR
framework overcomes the effect of noise beyond the reach
of conventional teleportation Ftele � FU . In particular, we
observe that, in some region of D and E where FU < 2/3, the
teleportation fidelities in MR framework surpass the classical
limit Ftele > Fcl = 2/3. It is a clear evidence that quantum
teleportation is possible even under such a noisy quantum
channel for which teleportation was deemed impossible to
date. Moreover, this is a teleportation using a single copy of
entangled state of the quantum channel without necessitating
additional resources and entanglement distillation [46–48].
An experimental demonstration of the optimized protocols
will be presented elsewhere [56].

VII. APPLICATIONS

Let us apply the MR framework to optimize teleportation-
based functionalities potentially useful in building quantum
processors and networks.

A. Multipartite teleportation

Alice teleports a qubit |ψ〉a to Charlie by cooperat-
ing with Bob via a GHZ-type entangled channel |�〉ābc =
cos(θ/2)|000〉 + sin(θ/2)|111〉 (0 � θ � π/2) [see Fig. 3(a)]
[19–23]. Alice performs the Bell-state measurement on |ψ〉a

and her part of the channel. Bob performs a local measure-
ment on his part. Then, they send their outcomes i and i′
to Charlie. In this scenario, the maximum teleportation fi-
delity based on unitary reversal is obtained as FU = (2 +
sin θ sin φ)/3. In the MR framework, the corresponding mea-
surement operator is M̂i,i′ ≡ b〈wi′ |aā〈vi| · |�〉ābc, where |vi〉
denotes the Bell basis and |w1〉 = cos(φ/2)|0〉 + sin(φ/2)|1〉
and |w2〉 = − sin(φ/2)|0〉 + cos(φ/2)|1〉 (0 � φ � π/2) are
Bob’s measurement basis. We can find R̂i,i′ for each
M̂i,i′ such that R̂i,i′M̂i,i′ |ψ〉 ∝ |ψ〉. For instance, when i =
1 and i′ = 1, M̂i=1,i′=1 = (1/

√
2)[cos(θ/2) cos(φ/2)|0〉〈0| +

FIG. 3. Applications for (a) multipartite teleportation, (b) en-
tanglement transmission, (c) one-way quantum repeater. The MR
framework makes it possible to optimize these protocols to transfer
an unknown quantum state |ψ〉 with the unit fidelity Ftele = 1 and
maximum success probability Pmax

tele .

sin(θ/2) sin(φ/2)|1〉〈1|]. Its optimal reversing operator is
Ri=1,i′=1 = tan(θ/2) tan(φ/2)|0〉〈0| + |1〉〈1|. By this, a faith-
ful tripartite teleportation Ftele = 1 is possible with success
probability Pmax

tele = 2 sin2(min[θ, φ]/2). The amount of in-
formation leaked to Alice and Bob is obtained as Gmax =
[2 − sin2(min[θ, φ]/2)]/3. These saturate the upper bound of
the trade-off relation (10). Note that the analysis above can
generally be extended to arbitrary multipartite teleportation.

B. Entanglement transmission

Suppose that Alice transfers a two-qubit state
|ψ〉ac = α|00〉 + β|10〉 + γ |01〉 + δ|11〉 to Bob via two
entangled pairs |�〉āb = cos(θ/2)|00〉 + sin(θ/2)|11〉
and |�〉c̄d = (|00〉 + |11〉)/

√
2 [see Fig. 3(b)]. The

Bell-state measurement is performed between a and
ā, while the joint measurement between c and c̄
is performed in |v′

1〉 = cos(φ/2)|00〉 + sin(φ/2)|11〉,
|v′

2〉 = sin(φ/2)|00〉 − cos(φ/2)|11〉, |v3〉 = cos(φ/2)|01〉 +
sin(φ/2)|10〉, |v′

4〉 = sin(φ/2)|01〉 − cos(φ/2)|10〉. In this
scenario, a protocol based on unitary reversal [24,25]
yields at best FU = [1 + (1 + sin θ )(1 + sin φ)]. In the
MR framework, e.g., for the outcomes i = 1 and i′ = 2,
M̂i=1,i′=2 = (1/2)[cos(θ/2)|0〉ba〈0| + sin(θ/2)|1〉ba〈1|] ⊗
[sin(φ/2)|0〉dc〈0| − cos(φ/2)|1〉dc〈1|]. Its optimal reversing
operator is then Ri=1,i′=2 = [tan(θ/2)|0〉〈0| + |1〉〈1|] ⊗
[− tan(φ/2)|1〉〈1| + |0〉〈0|]. As a result, a transmission of
arbitrary entangled qubits is possible with Ftele = 1 and
success probability Pmax

tele = 4 sin2(θ/2) sin2(φ/2). This is
also applicable for the transfer of arbitrary multipartite
entanglement. See Appendix E for details.

C. One-way quantum repeater

To transfer qubits over long distance, quantum repeaters
are required [1]. A one-way repeater exploits a teleportation-
based scheme to relay qubits at intermediate nodes [49,50,52].
Assume that Alice transmits a qubit |ψ〉a over long dis-
tance to David [see Fig. 3(c)]. To relay the qubit, Bob
performs the Bell-state measurement between the qubit from
Alice and one of the entangled pair |�〉bc = cos(θ/2)|00〉 +
sin(θ/2)|11〉 and transmits the remaining qubit to Charlie.
Similarly, Charlie relays the qubit to David with maximally
entangled qubits prepared for the channel and the joint
measurement taken as |v′

1〉 = cos(φ/2)|00〉 + sin(φ/2)|11〉,
|v′

2〉 = sin(φ/2)|00〉 − cos(φ/2)|11〉, |v′
3〉 = cos(φ/2)|01〉 +

sin(φ/2)|10〉, |v′
4〉 = sin(φ/2)|01〉 − cos(φ/2)|10〉.
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In this scenario, the maximum attainable fidelity by
unitary reversal is FU = (2 + sin θ sin φ)/3. In contrast,
the MR framework yields an optimal operator for David
to faithfully recover the input qubit. For example, when
Bob’s and Charlie’s outcomes are i = 2 and i′ = 1,
respectively, M̂i=2,i′=1 = (1/2)[cos(θ/2) cos(φ/2)|0〉〈0| −
sin(θ/2) sin(φ/2)]. David’s optimal operator is then
R̂i=2,i′=1 = tan(θ/2) tan(φ/2)|0〉〈0| − |1〉〈1| such that
R̂i=2,i′=1M̂i=2,i′=1|ψ〉 ∝ |ψ〉. As a result, a faithful
long-distance transmission Ftele = 1 is possible with
success probability Pmax

tele = 2 sin2(min[θ, φ]/2) (see details
in Appendix E).

VIII. REMARKS

Our result can be directly used to implement gate op-
erations for near-term noisy quantum processors where the
number of available quantum resources would be limited. In
the MR framework, we can find an optimal reversing oper-
ation for the teleportation over an arbitrary noisy quantum
channel |�〉āb. This protocol is also optimal for the tele-
portation over the channel (Î ⊗ Ĝ)|�〉āb to yield the output
state Ĝ|ψ〉. Thus, following Ref. [2], we can implement an
arbitrary gate operation Ĝ under the influence of noise without
requiring additional qubits.

A recent work [57] reported that any entangled state yields
nonclassical teleportation in the sense that the assemblage
of the conditional states upon Alice’s measurement cannot
be reproduced by unentangled states. In our work, we take
a different perspective aiming at high fidelity over classical
teleportation limit for a given entangled state under noise.
Our MR framework enables us to achieve the maximum tele-
portation fidelity with the maximum success probability up
to the fundamental limit, extended to arbitrary-dimensional
multipartite teleportation. It also offers a realistic way to real-
ize teleportation via a noisy quantum channel overcoming the
limit of previous protocols. Moreover, our protocol is easily
implementable because it requires only single-qubit operation
at the receiver’s party, while previous proposals for optimal
teleportation [18,26–30] rely on operations difficult to realize,
e.g., arbitrary two-qubit POVMs. We hope that our proposed
MR framework would provide a further insight to mitigate the
effect of noise while transmitting quantum information over
noisy quantum channel stimulating related works.
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APPENDIX A: MEASUREMENT-REVERSAL
FRAMEWORK FOR TELEPORTATION

1. Effective quantum measurement for teleportation

Let us consider a general scenario of one-to-one quantum
teleportation. An unknown quantum state ρa is prepared in
mode a and an entangled quantum state �āb is distributed
between two modes ā (at Alice’s location) and b (at Bob’s
location). Alice performs an arbitrary joint measurement {�i}
between mode a and ā. Then, the unnormalized reduced state
is given by

ρ̃ i
b = �i

aā(ρa ⊗ �āb) = Mi
a→b(ρ). (A1)

Therefore, we can define an effective quantum measurement
{Mi

a→b} that is nonlocal in the sense that its input a and output
b modes are spatially separated. The joint measurement can
be generally defined by operators �̂i

aā = ∑
l δ

(i)
l |v(i)

l 〉〈w(i)
l |

where {|v(i)
l 〉} and {|w(i)

l 〉} are an arbitrary orthonormal basis in
the Hilbert space of Ha ⊗ Hā, δl are non-negative values, and∑

i �̂
i†
aā�̂

i
aā = 1. An arbitrary entangled state can be given in

the form of �āb = ∑
k pk|�k〉〈�k|. We then define its corre-

sponding nonlocal quantum measurement with operators

M̂i,k,l ≡ √
pkδ

(i)
l āb〈�k|w(i)

l 〉aā, (A2)

and
∑

i,k,l M̂†
i,k,l M̂i,k,l=

∑
i,k,l pk (δ(i)

l )2〈�k|w(i)
l 〉aā〈w(i)

l |�k〉=1,
by which the reduced state is then represented by

ρ̃ i
b = traā

[
�i

aā(ρa ⊗ �āb)
] =

∑
k,l

M̂i,k,lρaM̂†
i,k,l . (A3)

Therefore, once the outcome i is shared with Bob, the reduced
state is equivalent to a postmeasurement state obtained when a
quantum measurement M = {M̂i,k,l} is applied to an unknown
quantum state ρ at Bob’s location. If we assume a rank-one
joint measurement �i

aā = |vi〉〈vi| and a pure entangled state
�āb = |�〉〈�|, the reduced state is

ρ̃ i
b = aā〈vi| · ρa ⊗ |�〉āb〈�| · |vi〉aā = M̂iρM̂†

i , (A4)

where the effective nonlocal quantum measurement is defined
by M̂i = aā〈vi|�〉āb satisfying

∑
i M̂†

i M̂i = 1.

2. Measurement-reversal framework
and performance measures

An arbitrary teleportation protocol can be in general
described by (R ◦ M)(ρ) ∝ ρ̃ in terms of a measurement
M and a reversing operation R optimized toward ρ̃ =
ρ. First, assume a pure input state ρ = |ψ〉〈ψ | and an
ideal quantum measurement M = {M̂i}. For the measure-
ment outcome i, the postmeasurement state is given by ρ i =
M̂i|ψ〉〈ψ |M̂†

i /pi(ψ ) where pi(ψ ) = 〈ψ |M̂†
i M̂i|ψ〉. The tele-

ported state after applying R (obtaining its outcome j) is then
written by ρ i

j = R̂i
jM̂i|ψ〉〈ψ |M̂†

i R̂i†
j /pi

j (ψ ), where pi
j (ψ ) =∑〈ψ |M̂†

i R̂i†
j R̂i

jM̂i|ψ〉. Note that each quantum measurement
operator can be represented in the singular value decom-
position as M̂i = V̂iD̂iÛi with unitary operators V̂i and Ûi

and a diagonal matrix D̂i = ∑d−1
n=0 λi

n|n〉〈n| in arbitrary d-
dimensional Hilbert space. We can then find an optimal
reversing operator as R̂i = λi

minÛ †
i D̂−1

i V̂ †
i so that an arbitrary

input state can be faithfully recovered by R̂iM̂i|ψ〉 = λi
min|ψ〉.
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This framework is also valid for a nonideal quan-
tum measurement and noisy quantum channel E = {Ê k}.
In such a case, the effective nonlocal quantum measure-
ment is generally given as a coarse-grained measurement,
e.g., M = {M̂i,k} in the sense that it yields outcome
i while the outcome k is hidden. The postmeasure-
ment state is then given by ρ i = ∑

k M̂i,k|ψ〉〈ψ |M̂†
i,k/pi(ψ )

where pi(ψ ) = ∑
k〈ψ |M̂†

i,kM̂i,k|ψ〉. The teleported state then

reads ρ i
j = ∑

k R̂i
jM̂i,k|ψ〉〈ψ |M̂†

i,kR̂i†
j /pi

j (ψ ) where pi
j (ψ ) =∑

k〈ψ |M̂†
i,kR̂i†

j R̂i
jM̂i,k|ψ〉. Note that the noise operators can

have different forms by changing the representation by unitary
recombination (U ), and so do the measurement operators.
Considering all the measurement operators for a single
identified outcome i, i.e., {M̂i,k=1, M̂i,k=2, . . .}, we find the
maximum value λ

i,km
min ≡ maxk,U [λi,k

min] among the smallest
singular values {λi,k=1

min , λi,k=2
min , . . .} over all possible repre-

sentations U , where k = km gives the maximum λi,km . We
then define a reversing operator for each outcome i as R̂i =
λ

i,km
minÛ †

i,km
D̂−1

i,km
.

The performance of quantum teleportation can be assessed
in terms of the teleportation fidelity, the success probability
and the information gain by Alice (senders and intermediators
in multipartite protocols) as listed below:

(i) Teleportation fidelity. We can define the teleportation
fidelity as the average overlap between the input and the
output state obtained when the teleportation succeeds, i.e.,

Ftele =
∫

dψ
∑

i

pi(ψ )〈ψ |ρ i
j=1|ψ〉. (A5)

For the teleportation via a pure entangled state without noise,
a faithful teleportation is always possible. i.e., Ftele = 1, by
applying an optimal reversing operator for a given M = {M̂i}.
On the other hand, in the presence of noise, the input pure state
|ψ〉 cannot be faithfully recovered. The attainable teleporta-
tion fidelity is thus lower than unity, F < 1. Bob’s optimal
reversing operation is determined to yield the maximum tele-
portation fidelity, by comparing the fidelity obtained by the
conditional unitary operation FU in the conventional scheme
and the fidelity obtained by the reversing operation FR, i.e.,
Ftele = max[FU ,FR] in the MR framework.

(ii) Success probability. We define the average success
probability of the teleportation as

Ptele =
∫

dψ
∑

i

pi
j=1(ψ ), (A6)

where pi
j=1 is the success probability of the reversing oper-

ation for the measurement outcome i. We here assume that
each reversing operation succeeds when its outcome is j = 1
without loss of generality. In the absence of noise in quantum
channel, the maximum success probability can be obtained as
Pmax

tele = ∑
i(λ

i
min)2, where λi

min is the smallest singular value
of M̂i. Detailed methods appear in Ref. [40].

(iii) Information gain by Alice. The amount of information
extracted by Alice (or senders and intermediators in multipar-
tite scenarios) affects the teleportation performance. Assume
that Alice attempts to extract information of the input state
|ψ〉 and estimate it as |ψ̃i〉 for the outcome i based on the
knowledge of M. Then, the information gain obtained by

FIG. 4. Teleportation is an asymmetric cloning. A faithful tele-
portation is 1 → N + 1 asymmetric cloning with N → ∞.

Alice can be quantified by averaging the closeness between
|ψ〉 and |ψ̃i〉,

GAlice =
∫

dψ
∑

i

∑
k

pi,k (ψ )|〈ψ̃i|ψ〉|2, (A7)

where pi,k (ψ ) = 〈ψ |M̂†
i,kM̂i,k|ψ〉. Without the effect of noise

in the quantum channel, the maximum gain can be evalu-
ated as Gmax

Alice = (d + ∑
i(λ

i
max)2)/(d + 1), where λi

max is the
largest singular value of M̂i [53].

APPENDIX B: FUNDAMENTAL LIMIT
BY THE NO-CLONING THEOREM

The performance of quantum teleportation is fundamen-
tally restricted by the no-cloning theorem. This can be
understood in a heuristic way as any leakage of information
about an unknown input state |ψ〉 during the teleportation
process would decrease the maximum amount of information
that can be transmitted to Bob and the overall performance
is degraded. The MR framework allows us to find such fun-
damental limits of the teleportation performance in an exact
quantitative manner. As illustrated in Fig. 4, any faithful quan-
tum teleportation process can be regarded as a 1 → N + 1
asymmetric cloning, i.e., |ψ〉 → |ψ̃i〉⊗N |ψ〉 with N → ∞.
The upper output of the cloning process yields an infinite
number of copies of the estimated state by Alice, and its
output fidelity is evaluated as the information gain by Al-
ice Gmax

Alice. On the other hand, the bottom output yields the
teleported state that is exactly the same with the input state.
Its output fidelity is thus given by the teleportation fidelity
Ftele = 1, and the overall maximum success probability is
given by Pmax

tele . The performance of this cloning machine is
restricted by a trade-off relation between the information gain
by Alice Gmax

Alice and the success probability Pmax
tele in Eq. (10).

This generally holds for any teleportation scenarios including
arbitrary multiparty and d-dimensional teleportations.

APPENDIX C: COMPARISON WITH OTHER PROTOCOLS
FOR FAITHFUL TELEPORTATION

The MR framework provides a way to optimize teleporta-
tion protocol to yield the maximum success probability Pmax

tele
saturating the upper bound of Eq. (10), while maintaining
the teleportation fidelity Ftele = 1. On the other hand, no
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previous protocols for faithful teleportation such as conclusive
[26–28] and probabilistic teleportation [29,30] address such
a fundamental limit of performance. It is also nontrivial to
optimize teleportation protocol for a given arbitrary quantum
channel up to the fundamental limit in previous protocols.
This is because the optimization of conclusive or probabilistic
teleportations is only based on the modification of Alice’s
joint measurement, while the MR framework generally allows
us to modify not only the joint measurement but also Bob’s
reversing operation.

Let us consider a qubit teleportation scenario for compar-
ison. Assume that Alice transmits an unknown qubit |ψ〉a

via a quantum channel prepared in |�〉āb = cos θ
2 |0〉ā|0〉b +

sin θ
2 |1〉ā|1〉b where 0 � θ � π

2 , which becomes a maximally
entangled state or a product state by setting θ = π

2 or θ = 0,
respectively. Alice performs a joint measurement on the
basis {|W1〉aā = cos φ

2 |0〉a|0〉ā + sin φ

2 |1〉a|1〉ā, |W2〉aā =
sin φ

2 |0〉a|0〉ā − cos φ

2 |1〉a|1〉ā, |W3〉aā = cos φ

2 |0〉a|1〉ā +
sin φ

2 |1〉a|0〉ā, |W4〉aā = sin φ

2 |0〉a|1〉ā − cos φ

2 |1〉a|0〉ā},
which becomes the Bell basis when φ = π

2 . In the MR
framework, the quantum measurement representation
of the teleportation is described by a set of operators
{M̂i = aā〈Wi||�〉āb} with

M̂1 = cos
θ

2
cos

φ

2
|0〉b a〈0| + sin

θ

2
sin

φ

2
|1〉b a〈1|,

M̂2 = cos
θ

2
sin

φ

2
|0〉b a〈0| − sin

θ

2
cos

φ

2
|1〉b a〈1|,

M̂3 = cos
θ

2
cos

φ

2
|0〉b a〈1| + sin

θ

2
sin

φ

2
|1〉b a〈0|,

M̂4 = cos
θ

2
sin

φ

2
|0〉b a〈1| − sin

θ

2
cos

φ

2
|1〉b a〈0|,

(C1)

which satisfies M̂1
†
M̂1 + M̂2

†
M̂2 + M̂3

†
M̂3 + M̂4

†
M̂4 = 1.

The optimal reversing operators for each measurement out-
come i = 1, 2, 3, 4 are then given as

R̂1 = tan
θ

2
tan

φ

2
|0〉〈0| + |1〉〈1|,

R̂2 =
{
σ̂x

(
cot θ

2 tan φ

2 |0〉〈0| + |1〉〈1|)iσ̂y if θ � φ

σ̂x
(|0〉〈0| + tan θ

2 cot φ

2 |1〉〈1|)iσ̂y if θ < φ,

R̂3 = σ̂x

(
tan

θ

2
tan

φ

2
|0〉〈0| + |1〉〈1|

)
,

R̂4 =
{(

cot θ
2 tan φ

2 |0〉〈0| + |1〉〈1|)iσ̂y if θ � φ(|0〉〈0| + tan θ
2 cot φ

2 |1〉〈1|)iσ̂y if θ < φ.

(C2)

After receiving the measurement outcome i through a classi-
cal channel from Alice, Bob applies an appropriate reversing
operation {Bi

j} in Eq. (C2). The input state can then be faith-
fully recovered at Bob’s party when Bob’s reversing operation
succeeds (i.e., when the outcome is j = 1). The overall suc-
cess probability of the teleportation protocol can then be
evaluated as

Ptele = 2 sin2

(
min[θ, φ]

2

)
. (C3)

For a given quantum channel in a nonmaximally entangled
state (θ < π/2), a faithful teleportation can be achieved

with the success probability Pmax
tele = 2 sin2(θ/2) for φ > θ .

It shows a monotonic increase of the success probability of
quantum teleportation as the degree of entanglement of the
channel E = sin (θ/2) increases. The maximum amount of
information gain by Alice can be also evaluated as Gmax

Alice =
[2 − sin2(θ/2)]/3. Note that the success probability of the
teleportation in Eq. (C3) reaches the upper bound in Eq. (10)
together with the information gain Gmax

Alice.
First, let us consider a probabilistic teleportation protocol

proposed in Ref. [30] for comparison, which uses the
quantum channel, |�〉āb = (|00〉 + n|11〉)/(1 + |n|2)1/2

for 0 � n � 1. This allows the unit teleportation fidelity
Ftele = 1 by modifying the joint measurement basis as
|W1〉 = (|00〉 + n|11〉)/(1 + |n|2)1/2, |W2〉 = (n∗|00〉 −
|11〉)/(1 + |n|2)1/2, |W3〉 = (n|01〉 + |10〉)/(1 + |n|2)1/2,
|W4〉 = (|01〉 − n∗|10〉)/(1 + |n|2)1/2 and postselecting
the output qubits when the measurement outcome is
i = 2 or 4. The success probability of this protocol is
Ptele = 2|n|2/(1 + |n|2)2. However, in the MR framework,
the protocol can be further optimized by additionally
applying reversing operation at Bob’s party even when
the outcome is i = 1 or 3, i.e., R̂1 = |n|2|0〉〈0| + |1〉〈1|
and R̂3 = |n|2|1〉〈0| + |0〉〈1|, which also yield events in
which the unknown input qubit |ψ〉 is perfectly teleported.
This example illustrates that the protocol in Ref. [30] does
not fully use the quantum resources. As a result, the MR
framework allows a faithful teleportation Ftele = 1 with
the success probability Pmax

tele = 2|n|2/(1 + |n|2) that is
always higher than Ptele = 2|n|2/(1 + |n|2)2. The maximum
amount of information that Alice can extract in this case is
Gmax

Alice = (2 + 3|n|2 + |n|4)/3(1 + |n|2)2. It is straightforward
to see that the obtained success probability Pmax

tele and the
information gain Gmax

Alice saturate the upper bound in Eq. (10).
Now, let us consider a conclusive teleportation proto-

col by following the method in Ref. [27]. For a given
channel |�〉āb = ∑d−1

α=0 aα|α, α〉, a conclusive teleportation
can be optimized by modifying the joint measurement per-
formed by Alice. The measurement operators for conclusive
events can be defined as a rank one projector M̂i = λ|Wi〉〈Wi|
where |Wi〉 ≡ (1/d )

∑d−1
α,β=0(Û i

α,βa−1
β )|α, β〉 is the projec-

tion basis, and the measurement operator for inconclusive
events is M̂d2+1 = I − ∑d2

i=1 M̂i from the completeness rela-
tion. We can rewrite the conclusive measurement operators
as

∑d2

i=1 M̂i = ∑
αβ (λ/da2

β )|α, β〉〈α, β| by using the rela-
tion

∑
i Û i

αβÛ ∗i
γ δ = dδαγ δβδ . From the positivity condition of

the inconclusive operator, i.e., 〈ψ |M̂d2+1|ψ〉 = 〈ψ |∑αβ (1 −
λ/da2

β )|α, β〉〈α, β| · |ψ〉 � 0 ∀ |ψ〉, we can find that 0 � λ �
a2

mind where amin is the smallest coefficient of the channel
state. As the probability of each conclusive event is given by
〈Wi|M̂i|Wi〉/d2 = λ/d2, the overall success probability of the
conclusive teleportation protocol is Ptele = ∑d2

i=1 λ/d2 = λ

which has the maximum value a2
mind . Note that it allows us

to reach the maximum success probability Pmax
tele in some sce-

narios. For example, a qubit teleportation with a channel state
|�〉āb = cos θ

2 |0〉ā|0〉b + sin θ
2 |1〉ā|1〉b can achieve the max-

imum success probability Pmax
tele = 2 sin2(θ/2) by optimally

modifying the joint measurement performed by Alice, which
is the same with maximum obtained in the MR framework.

033119-7



LEE, IM, KIM, NHA, AND KIM PHYSICAL REVIEW RESEARCH 3, 033119 (2021)

However, in general, it is nontrivial to optimize a conclusive
teleportation protocol to yield the maximum success prob-
ability Pmax

tele because as modifying the joint measurement
the amount of information gain by Alice also changes. In
addition, even in a qubit teleportation, implementing a con-
clusive teleportation is demanding as it frequently requires
to realize a nontrivial two-qubit POVMs, while only a single

qubit operation suffices to complete the optimized protocol
in the MR framework. Moreover, in contrast to probabilistic
or conclusive protocols, the MR framework is generally and
straightforwardly extendable to arbitrary multipartite quantum
teleportation and also to the teleportation over noisy quantum
channels.

APPENDIX D: DETAILS OF THE TELEPORTATION PROTOCOL VIA A NOISY QUANTUM CHANNEL

In this section, we give more details on the optimized quantum teleportation via a noisy quantum channel in the MR
framework. We consider an unknown qubit |ψ〉a and a quantum channel prepared in an entangled state |�〉āb = cos θ

2 |0〉ā|0〉b +
sin θ

2 |1〉ā|1〉b where 0 � θ � π
2 , which becomes a maximally entangled state for θ = π/2. We assume that the mode ā or b of

the channel state |�〉āb experiences decoherence described by a set of operators {Êk,ā} or {Êk′,b} in the Kraus representation,
respectively. The quantum measurement is then represented by

M̂i,k = aā〈Wi|Êk,āÊk′,b|�〉āb, (D1)

in the presence of noise on both modes. We first consider optimal teleportation protocols for the amplitude damping noise either
in mode b (with Bob) or ā (with Alice) as described below:

(i) Decoherence in mode b. Consider an example in which decoherence occurs in mode b. This is a realistic scenario if the
entangled qubit pair is prepared by Alice and then one qubit of the pair is sent to Bob. The amplitude damping noise can be
described by Ê1 = |0〉〈0| + √

1 − D|1〉〈1| and Ê2 = √
D|0〉〈1| [55]. Let us fix the joint measurement basis as the Bell basis for

simplicity. We then define the corresponding quantum measurement M̂i,k = aā〈Wi|Êk,b|�〉āb as

M̂i=1,k=1 = 1√
2

cos
θ

2
|0〉ba〈0| +

√
1 − D

2
sin

θ

2
|1〉ba〈1|, M̂i=1,k=2 =

√
D

2
sin

θ

2
|0〉ba〈1|,

M̂i=2,k=1 = 1√
2

cos
θ

2
|0〉ba〈0| −

√
1 − D

2
sin

θ

2
|1〉ba〈1|, M̂i=2,k=2 = −

√
D

2
sin

θ

2
|0〉ba〈1|,

M̂i=3,k=1 = 1√
2

cos
θ

2
|0〉ba〈1| +

√
1 − D

2
sin

θ

2
|1〉ba〈0|, M̂i=3,k=2 =

√
D

2
sin

θ

2
|0〉ba〈0|,

M̂i=4,k=1 = − 1√
2

cos
θ

2
|0〉ba〈1| +

√
1 − D

2
sin

θ

2
|1〉ba〈0|, M̂i=4,k=2 =

√
D

2
sin

θ

2
|0〉ba〈0|,

(D2)

which satisfies
∑

i,k M̂†
i,kM̂i,k = 1.

The maximum teleportation fidelity of the conventional protocol based on conditional unitary reversal Û i = {Î, σ̂z, σ̂x, σ̂xσ̂z}
can be calculated by FU = max

∫
dψ

∑
i

∑
k |a〈ψ |Û iM̂i,k|ψ〉a|2, resulting in

FU = 4 − D + cos θ − (1 − D) cos θ + 2
√

1 − D sin θ

6
. (D3)

On the other hand, in the MR framework, we define the reversing operators according to the recipe in Eq. (12) as

R̂i=1 = Î

(√
1 − D tan

θ

2
|0〉〈0| + |1〉〈1|

)
,

R̂i=2 = σ̂z

(√
1 − D tan

θ

2
|0〉〈0| + |1〉〈1|

)
,

R̂i=3 = σ̂x

(√
1 − D tan

θ

2
|0〉〈0| + |1〉〈1|

)
,

R̂i=4 = σ̂xσ̂z

(√
1 − D tan

θ

2
|0〉〈0| + |1〉〈1|

)
.

(D4)

The teleported states obtained when the reversing operation succeeds (i.e., j = 1) are

pi=1
j=1(ψ )ρ i=1

j=1 = pi=2
j=1(ψ )ρ i=2

j=1 = 1 − D

2
sin2 θ

2
|ψ〉〈ψ | + D(1 − D)|β|2

2
sin2 θ

2
tan2 θ

2
|0〉〈0|,

pi=3
j=1(ψ )ρ i=3

j=1 = pi=4
j=1(ψ )ρ i=4

j=1 = 1 − D

2
sin2 θ

2
|ψ〉BB〈ψ | + D(1 − D)|α|2

2
sin2 θ

2
tan2 θ

2
|1〉BB〈1|,

(D5)
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FIG. 5. Teleportation fidelity under the amplitude damping decoherence. Teleportation fidelities are plotted by changing D and θ under the
amplitude damping in modes (a) b and (b) ā. In all regions, the optimal reversing operation yields a higher teleportation fidelity compared with
the conventional protocol based on conditional unitary operation, i.e., FR − FU � 0 always holds. The yellow plane represents FR − FU = 0.
These results show that the teleportation protocol optimized within our general framework overcomes the limit of conventional quantum
teleportation protocols.

where the probability of successfully obtaining the teleported state pi
j=1(ψ ) = 〈ψ |∑k M̂†

i,kR̂i†
j=1R̂i

j=1M̂i,k|ψ〉 is given by

pi=1
j=1(ψ ) = pi=2

j=1(ψ ) = 1 − D

2
sin2 θ

2
+ D(1 − D)|β|2

2
sin2 θ

2
tan2 θ

2
,

pi=3
j=1(ψ ) = pi=4

j=1(ψ ) = 1 − D

2
sin2 θ

2
+ D(1 − D)|α|2

2
sin2 θ

2
tan2 θ

2
.

(D6)

We then calculate the teleportation fidelity obtained in the MR framework in Eq. (A5) with the probability of obtaining the
measurement outcome i, i.e., pi(ψ ) = ∑

k〈ψ |M̂†
i,kM̂i,k|ψ〉 given by

pi=1(ψ ) = pi=2(ψ ) = |α|2
2

cos2 θ

2
+ |β|2

2
sin2 θ

2
,

pi=3(ψ ) = pi=4(ψ ) = |α|2
2

sin2 θ

2
+ |β|2

2
cos2 θ

2
.

(D7)

As a result, we obtain

FR =
∫

dψ

[
1 + D|α|2|β|2 tan2 θ

2

1 + D|β|2 tan2 θ
2

(
|α|2 cos2 θ

2
+ |β|2 sin2 θ

2

)
(D8)

+ 1 + D|α|2|β|2 tan2 θ
2

1 + D|α|2 tan2 θ
2

(
|α|2 sin2 θ

2
+ |β|2 cos2 θ

2

)]
.

We compare FR with FU in Eq. (D3) by changing 0 � θ � π/2 and the degree of decoherence 0 � D � 1 in Fig. 5(a), which
clearly shows that FR � FU in all regions.

(ii) Decoherence in mode ā. Let us now consider the case when decoherence occurs in mode ā, assuming for simplicity
that decoherence does not occur on mode b. The mode ā of the channel |�〉āb then experiences the amplitude damping noise
with operators Ê1 ≡ |0〉〈0| + √

1 − D|1〉〈1| and Ê2 ≡ √
D|0〉〈1|. In this case, the maximum teleportation fidelity obtained in

conventional protocols is the same as Eq. (D3). On the other hand, within our general framework, we can find an appropriate
joint measurement basis for a given decoherence model. For example, we can choose a joint measurement basis as

|W1〉 = 1√
2 − D

(√
1 − D|00〉 + |11〉),

|W2〉 = 1√
2 − D

(|00〉 − √
1 − D|11〉),

|W3〉 = 1√
2 − D

(|01〉 + √
1 − D|10〉),

|W4〉 = 1√
2 − D

(√
1 − D|01〉 − |10〉),

(D9)
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so that the corresponding effective quantum measurement is given by M̂i,k = aā〈Wi|Êk,ā|�〉āb as

M̂i=1,k=1 =
√

1 − D

2 − D

(
cos

θ

2
|0〉ba〈0| + sin

θ

2
|1〉ba〈1|

)
, M̂i=1,k=2 =

√
D(1 − D)

2 − D
sin

θ

2
|1〉ba〈0|,

M̂i=2,k=1 = 1√
2 − D

(
cos

θ

2
|0〉ba〈0| − (1 − D) sin

θ

2
|1〉ba〈1|

)
, M̂i=2,k=2 =

√
D

2 − D
sin

θ

2
|1〉ba〈0|,

M̂i=3,k=1 =
√

1 − D

2 − D

(
cos

θ

2
|0〉ba〈1| + sin

θ

2
|1〉ba〈0|

)
, M̂i=3,k=2 =

√
D(1 − D)

2 − D
sin

θ

2
|1〉ba〈1|,

M̂i=4,k=1 = −1√
2 − D

(
cos

θ

2
|0〉ba〈1| − (1 − D) sin

θ

2
|1〉ba〈0|

)
, M̂i=4,k=2 =

√
D

2 − D
sin

θ

2
|1〉ba〈1|.

(D10)

The probability of obtaining each outcome i is then calculated by pi(ψ ) = ∑
k〈ψ |M̂†

i,kM̂i,k|ψ〉 as

pi=1(ψ ) = 1 − D

2 − D

(
|α|2 cos2 θ

2
+ |β|2 sin2 θ

2

)
+ D(1 − D)

2 − D
|α|2 sin2 θ

2
,

pi=2(ψ ) = 1

2 − D

(
|α|2 cos2 θ

2
+ (1 − D)2|β|2 sin2 θ

2

)
+ D

2 − D
|α|2 sin2 θ

2
,

pi=3(ψ ) = 1 − D

2 − D

(
|β|2 cos2 θ

2
+ |α|2 sin2 θ

2

)
+ D(1 − D)

2 − D
|β|2 sin2 θ

2
,

pi=4(ψ ) = 1

2 − D

(
|β|2 cos2 θ

2
+ (1 − D)2|α|2 sin2 θ

2

)
+ D

2 − D
|β|2 sin2 θ

2
.

(D11)

The results for the outcome i = 1 and i = 3 are then selected, and after applying an appropriate reversing operation with
R̂i = Û i[tan(θ/2)|0〉〈0| + |1〉〈1|] where Û i = {Î, σ̂z, σ̂x, σ̂xσ̂z}, the output states in mode b are obtained as

pi=1
b (ψ )ρ i=1

b = 1 − D

2 − D
sin2 θ

2
|ψ〉〈ψ | + D(1 − D)

2 − D
|α|2 sin2 θ

2
|1〉〈1|,

pi=3
b (ψ )ρ i=3

b = 1 − D

2 − D
sin2 θ

2
|ψ〉〈ψ | + D(1 − D)

2 − D
|β|2 sin2 θ

2
|0〉〈0|,

(D12)

where

pi=1
b (ψ ) = (1 − D)(1 + D|α|2)

2 − D
sin2 θ

2
,

pi=3
b (ψ ) = (1 − D)(1 + D|β|2)

2 − D
sin2 θ

2
.

(D13)

We can then calculate the teleportation fidelity as

FR =
∫

dψ〈ψ | pi=1(ψ )ρ i=1
b + pi=3(ψ )ρ i=3

b

pi=1(ψ ) + pi=3(ψ )
|ψ〉. (D14)

As shown in Fig. 5(b), the teleportation protocol optimized within our framework outperforms the conventional protocols.
(iii) Other forms of decoherence. We can also similarly find the optimal protocols to maximize the teleportation fidelity in

the presence of other types of decoherence, dephasing, and depolarizing noise as described by [55]

Dephasing: Ê1 = |0〉〈0| + √
1 − D|1〉〈1|, Ê2 =

√
D|1〉〈1|,

Depolarizing: Ê1 =
√

1 − 3D/4Î, Ê2 =
√

D/4σ̂x, Ê3 =
√

D/4σ̂y, Ê4 =
√

D/4σ̂z.
(D15)
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We then define the corresponding quantum measurement M̂i,k = aā〈Wi|Êk,b|�〉āb (on mode b) as

Dephasing:

M̂i=1,k=1 = 1√
2

cos
θ

2
|0〉ba〈0| +

√
1 − D

2
sin

θ

2
|1〉ba〈1|, M̂i=1,k=2 =

√
D

2
sin

θ

2
|1〉ba〈1|,

M̂i=2,k=1 = 1√
2

cos
θ

2
|0〉ba〈0| −

√
1 − D

2
sin

θ

2
|1〉ba〈1|, M̂i=2,k=2 = −

√
D

2
sin

θ

2
|1〉ba〈1|,

M̂i=3,k=1 = 1√
2

cos
θ

2
|0〉ba〈1| +

√
1 − D

2
sin

θ

2
|1〉ba〈0|, M̂i=3,k=2 =

√
D

2
sin

θ

2
|1〉ba〈0|,

M̂i=4,k=1 = − 1√
2

cos
θ

2
|0〉ba〈1| +

√
1 − D

2
sin

θ

2
|1〉ba〈0|, M̂i=4,k=2 =

√
D

2
sin

θ

2
|1〉ba〈0|,

(D16)

Depolarizing:

M̂i,k=1 = 1√
2

√
1 − 3D

4

(
cos

θ

2
|0〉ba〈0| + sin

θ

2
|1〉ba〈1|

)
Û i,

M̂i,k=2 = 1√
2

√
3D

4

(
cos

θ

2
|0〉ba〈1| + sin

θ

2
|1〉ba〈0|

)
Û i,

M̂i,k=3 = i√
2

√
3D

4

(
cos

θ

2
|0〉ba〈1| − sin

θ

2
|1〉ba〈0|

)
Û i,

M̂i,k=4 = 1√
2

√
3D

4

(
cos

θ

2
|0〉ba〈0| − sin

θ

2
|1〉ba〈1|

)
Û i,

(D17)

where Û i = {Î, σ̂z, σ̂x, σ̂xσ̂z}, which satisfies
∑

i,k M̂†
i,kM̂i,k = 1.

The maximum teleportation fidelity of the conventional protocol based on conditional unitary reversal Û i = {Î, σ̂z, σ̂x, σ̂xσ̂z}
can be obtained as

Dephasing: FU = 2 + √
1 − D sin θ

3
,

Depolarizing: FU = 4 − D + 2
√

1 − D sin θ

6
.

(D18)

In the MR framework, we can define the reversing operators. The reversing operators for the dephasing noise are given in the
same form as (D4), while those for the depolarizing noise are defined as

R̂i = Û i

(
tan

θ

2
|0〉〈0| + |1〉〈1|

)
. (D19)

We then calculate the teleportation fidelity FR obtained by the reversing operation as we did for the damping noise, resulting
in

Dephasing: FR =
∫

dψ

[
1 − D + D|β|4
1 − D + D|β|2

(
|α|2 cos2 θ

2
+ |β|2 sin2 θ

2

)
(D20)

+1 − D + D|α|4
1 − D + D|α|2

(
|α|2 sin2 θ

2
+ |β|2 cos2 θ

2

)]
,

Depolarizing: FR = 1 − D

2
. (D21)

We compare FR with FU in Eq. (D18) by changing 0 � θ � π/2 and the degree of decoherence 0 � D � 1 resulting in
Figs. 6(a) and 6(b). As a result, we find that the MR framework allows us to optimize quantum teleportation protocol such that
Ftele = max[FU , FR] even via a severely decohered arbitrary quantum channel beyond the reach of the conventional protocols as
we plot in Fig. 2.

APPENDIX E: APPLICATION TO TELEPORTATION-BASED FUNCTIONALITIES FOR QUANTUM NETWORK

In this section, we apply the MR framework to teleportation-based functionalities that are potentially useful in building
scalable quantum architectures or quantum networks as illustrated in Fig. 3.
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FIG. 6. Teleportation fidelity under the dephasing and the depolarizing decoherence. Teleportation fidelities are plotted by changing D and
θ for (a) the dephasing and (b) the depolarization in mode b. For the dephasing, (a) the optimal reversing operation yields a higher teleportation
fidelity FR compared with the conventional protocols FU based on conditional unitary operation in most cases. For the depolarization, (b) FR

is always larger than FU , i.e., FR − FU � 0 holds. The yellow plane represents FR − FU = 0. These results show that our general framework
enables us to teleport quantum states under decoherence beyond the reach of the conventional protocols.

(a) Multipartite communication. Suppose that Alice teleports a qubit |ψ〉a to Charlie by cooperating with Bob. Alice, Bob,
and Charlie are connected in a quantum network via a GHZ-type entangled state |�〉ābc = cos(θ/2)|000〉 + sin(θ/2)|111〉
(0 � θ � π/2) as illustrated in Fig. 3(a). For this, Alice performs a joint measurement in Bell basis |vi〉 (with outcomes
i = 1, 2, 3, 4) between the input qubit mode ā and the one mode of the entangled channel a. Bob performs a projection
measurement (with outcomes i′ = 1, 2) on mode b of the channel in the basis |w1〉 = cos(φ/2)|0〉 + sin(φ/2)|1〉, |w2〉 =
− sin(φ/2)|0〉 + cos(φ/2)|1〉 where 0 � φ � π/2. Alice and Bob send their measurement outcomes i and i′, respectively, to
Charlie via a classical channel. The measurement operator of the teleportation in the MR framework can be written by

M̂i,i′ ≡ b〈wi′ |aā〈vi| · |�〉ābc. (E1)

If we assume θ � φ, the measurement operator for all possible measurement outcomes i = 1, 2, 3, 4 and i′ = 1, 2 are given by

M̂i=1,i′=1 = 1√
2

(
cos

θ

2
cos

φ

2
|0〉〈0| + sin

θ

2
sin

φ

2
|1〉〈1|

)
,

M̂i=1,i′=2 = 1√
2
σxσz

(
sin

θ

2
cos

φ

2
|0〉〈0| + cos

θ

2
sin

φ

2
|1〉〈1|

)
σx,

M̂i=2,i′=1 = 1√
2
σz

(
cos

θ

2
cos

φ

2
|0〉〈0| + sin

θ

2
sin

φ

2
|1〉〈1|

)
,

M̂i=2,i′=2 = 1√
2
σx

(
sin

θ

2
cos

φ

2
|0〉〈0| + cos

θ

2
sin

φ

2
|1〉〈1|

)
σx,

M̂i=3,i′=1 = 1√
2

(
cos

θ

2
cos

φ

2
|0〉〈0| + sin

θ

2
sin

φ

2
|1〉〈1|

)
σx,

M̂i=3,i′=2 = 1√
2
σxσz

(
sin

θ

2
cos

φ

2
|0〉〈0| + cos

θ

2
sin

φ

2
|1〉〈1|

)
,

M̂i=4,i′=1 = 1√
2

(
cos

θ

2
cos

φ

2
|0〉〈0| + sin

θ

2
sin

φ

2
|1〉〈1|

)
σxσz,

M̂i=4,i′=2 = 1√
2
σx

(
sin

θ

2
cos

φ

2
|0〉〈0| + cos

θ

2
sin

φ

2
|1〉〈1|

)
.

(E2)

We can calculate the amount of information obtained by Alice through this measurement as

Gmax
Alice = 1

3

(
1 + sin2 φ

2

)
(E3)

by following the definition of the information gain of quantum measurement [53]. Note that a teleportation protocol convention-
ally based on unitary reversal yields the teleportation fidelity FU = (2 + sin θ sin φ)/3. By contrast, in the MR framework, we
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can find the optimal reversing operators for each measurement outcome as

R̂i=1,i′=1 = 1√
2

(
tan

θ

2
tan

φ

2
|0〉〈0| + |1〉〈1|

)
,

R̂i=1,i′=2 = 1√
2
σxσz

(
cot

θ

2
tan

φ

2
|0〉〈0| + |1〉〈1|

)
σx,

R̂i=2,i′=1 = 1√
2
σz

(
tan

θ

2
tan

φ

2
|0〉〈0| + |1〉〈1|

)
,

R̂i=2,i′=2 = 1√
2
σx

(
cot

θ

2
tan

φ

2
|0〉〈0| + |1〉〈1|

)
σx,

R̂i=3,i′=1 = 1√
2
σx

(
tan

θ

2
tan

φ

2
|0〉〈0| + |1〉〈1|

)
,

R̂i=3,i′=2 = 1√
2
σz

(
cot

θ

2
tan

φ

2
|0〉〈0| + |1〉〈1|

)
σx,

R̂i=4,i′=1 = 1√
2
σzσx

(
tan

θ

2
tan

φ

2
|0〉〈0| + |1〉〈1|

)
,

R̂i=4,i′=2 = 1√
2

(
cot

θ

2
tan

φ

2
|0〉〈0| + |1〉〈1|

)
σx,

(E4)

to accomplish R̂i,i′M̂i,i′ |ψ〉 ∝ |ψ〉. Therefore, by applying these optimal reversing operation, it is possible to faithfully recover
the input qubit |ψ〉 at Charlie’s location, i.e., Ftele = 1. The maximum success probability of the teleportation protocol can be
evaluated as

Pmax
tele = 2 sin2 φ

2
. (E5)

It is straightforward to see that Pmax
tele and Gmax

Alice in Eq. (E3) saturate the upper bound in Eq. (10).
(b) Entanglement transmission. Suppose that Alice teleports an arbitrary two qubit state |ψ〉ac = α|00〉 + β|10〉 + γ |01〉 +

δ|11〉 to Bob via two entangled pairs: one is in an arbitrary entangled state |�〉āb = cos(θ/2)|00〉 + sin(θ/2)|11〉 (0 � θ � π/2)
and the other is a maximally entangled state |�〉c̄d = (|00〉 + |11〉)/

√
2 as illustrated in Fig. 3(b). We also assume that the first

joint measurement between mode a and ā is performed in the Bell basis |vi〉 (i = 1, 2, 3, 4), while the other joint measurement
between modes c and c̄ (i′ = 1, 2, 3, 4) is performed in the basis

|v′
1〉 = cos

φ

2
|00〉 + sin

φ

2
|11〉,

|v′
2〉 = sin

φ

2
|00〉 − cos

φ

2
|11〉,

|v′
3〉 = cos

φ

2
|01〉 + sin

φ

2
|10〉,

|v′
4〉 = sin

φ

2
|01〉 − cos

φ

2
|10〉.

(E6)

In the MR framework, the quantum measurement for all measurement outcomes i = 1, 2, 3, 4 and i′ = 1, 2, 3, 4 is defined by

M̂i,i′ ≡ cc̄〈vi′ |aā〈vi| · |�〉āb|�〉c̄d . (E7)

For example, when the outcome is i = 1 and i′ = 2, the corresponding measurement operator is given by

M̂i=1,i′=2 = 1

2

(
cos

θ

2
|0〉ba〈0| + sin

θ

2
|1〉ba〈1|

)
⊗

(
sin

φ

2
|0〉dc〈0| − cos

φ

2
|1〉dc〈1|

)
, (E8)

and its optimal reversing operator is

R̂i=1,i′=2 =
(

tan
θ

2
|0〉b〈0| + |1〉b〈1|

)
⊗

(
− tan

φ

2
|0〉d〈0| − |1〉d〈1|

)
. (E9)

While a conventional teleportation based on unitary reversal can achieve at best FU = [1 + (1 + sin θ )(1 + sin φ)], the opti-
mized protocol in the MR framework enables a faithful teleportation, i.e., Ftele = 1 with the probability

Pmax
tele = 4 sin2 θ

2
sin2 φ

2
, (E10)
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which satisfies the performance limit in Eq. (10) together with the amount of information gain by Alice that can be evaluated
as Gmax

Alice = (1/5)[1 + cos2(θ/2) cos2(φ/2)]. Note that the upper bound of the trade-off relation is not saturated in this scenario
since the input state |ψ〉ac is in d = 4 dimensional Hilbert space in which only a specific set of quantum measurements can
saturate the bound. The saturation condition for arbitrary d-dimensional quantum measurements is given in Ref. [40].

(c) One-way quantum repeater. Alice transmits a qubit over long distance to David with the help of teleportation-based
quantum repeaters at intermediated nodes (Bob and Charlie) as illustrated in Fig. 3(c). Let us assume that Bob performs a
joint measurement in the Bell basis |vi〉 (i = 1, 2, 3, 4) between the qubit Alice has sent |ψ〉a and one of the entangled qubit
pair prepared in Bob’s node |�〉bc = cos(θ/2)|00〉 + sin(θ/2)|11〉, and transmits the remaining qubit to Charlie. Then, Charlie
performs a joint measurement in the basis (i′ = 1, 2, 3, 4)

|v′
1〉 = cos

φ

2
|00〉 + sin

φ

2
|11〉,

|v′
2〉 = sin

φ

2
|00〉 − cos

φ

2
|11〉,

|v′
3〉 = cos

φ

2
|01〉 + sin

φ

2
|10〉,

|v′
4〉 = sin

φ

2
|01〉 − cos

φ

2
|10〉,

(E11)

between the qubit from Bob and one of the maximally entangled qubits and transmits the remaining qubit to David. In the
MR framework, the quantum measurement representation of the protocol (for all measurement outcomes i = 1, 2, 3, 4 and
i′ = 1, 2, 3, 4) is defined as

M̂i,i′ ≡ bc〈vi′ |aā〈vi| · |�〉āb|�〉cd . (E12)

For example, when the outcome of Bob’s joint measurement is i = 2 and the outcome of Charlie’s joint measurement is i′ = 1,
the corresponding measurement operator is written by

M̂i=2,i′=1 = 1

2

(
cos

θ

2
cos

φ

2
|0〉da〈0| − sin

θ

2
sin

φ

2
|1〉da〈1|

)
, (E13)

and its optimal reversing operator is

R̂i=2,i′=1 = tan
θ

2
tan

φ

2
|0〉b〈0| − |1〉b〈1|. (E14)

In this scenario, while the maximum teleportation fidelity obtained by conventional protocols based on unitary reversal is FU =
(2 + sin θ sin φ)/3, the optimize protocol in MR framework enables a faithful transmission, i.e., Ftele = 1 over long distance
with the success probability

Pmax
tele = 2 sin2

(
min [θ, φ]

2

)
. (E15)

This saturates the upper bound in Eq. (10) together with the amount of information gain by Alice evaluated as Gmax
Alice = (1/3){1 +

cos2(min[θ, φ]/2)}.
We note that, like the aforementioned scenarios, any multipartite quantum teleportation including multiple senders, inter-

mediators, and receivers in a quantum network can be optimized in the MR framework so that an unknown quantum state in
the quantum network can be transmitted with the unit fidelity Ftele = 1 with the maximum success probability satisfying (or
saturating) the performance limit. It would be generally useful for any quantum communication protocols in a complicated
quantum network.
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can Demonstrate Nonclassical Teleportation, Phys. Rev. Lett.
119, 110501 (2017).

033119-16

https://doi.org/10.1038/nature01358
https://doi.org/10.1038/nphoton.2012.243
https://doi.org/10.1103/PhysRevLett.112.250501
https://doi.org/10.1038/ncomms7787
https://doi.org/10.1103/PhysRevA.100.052303
https://doi.org/10.1103/PhysRevLett.86.1366
https://doi.org/10.1103/PhysRevLett.97.030402
https://doi.org/10.1038/s41534-021-00426-x
https://doi.org/10.1103/PhysRevLett.119.110501

