
1524 Vol. 8, No. 12 / December 2021 / Optica Research Article

Noise-resistant quantum communications using
hyperentanglement
Jin-Hun Kim,1 Yosep Kim,1 Dong-Gil Im,1 Chung-Hyun Lee,1 Jin-Woo Chae,1

Giuliano Scarcelli,2,3 AND Yoon-Ho Kim1,4

1Department of Physics, PohangUniversity of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
2Fischell Department of Bioengineering, University ofMaryland, College Park, Maryland 20742, USA
3e-mail: scarc@umd.edu
4e-mail: yoonho72@gmail.com

Received 1 September 2021; revised 5 November 2021; accepted 9 November 2021; published 1 December 2021

Quantum information protocols are being deployed in increasingly practical scenarios, via optical fibers or free space,
alongside classical communications channels. However, entanglement, the most critical resource to deploy to the com-
municating parties, is also the most fragile to the noise-induced degradations. Here we show that polarization-frequency
hyperentanglement of photons can be effectively employed to enable noise-resistant distribution of polarization entan-
glement through noisy quantum channels. In particular, we demonstrate that our hyperentanglement-based scheme
results in an orders-of-magnitude increase in the SNR for distribution of polarization-entangled qubit pairs, enabling
quantum communications even in the presence of strong noise that would otherwise preclude quantum operations due
to noise-induced entanglement sudden death. While recent years have witnessed tremendous interest and progress in
long-distance quantum communications, previous attempts to deal with the noise have mostly been focused on passive
noise suppression in quantum channels. Here, via the use of hyperentangled degrees of freedom, we pave the way toward
a universally adoptable strategy to enable entanglement-based quantum communications via strongly noisy quantum
channels. ©2021Optical Society of America under the terms of theOSAOpen Access Publishing Agreement

https://doi.org/10.1364/OPTICA.442240

1. INTRODUCTION

Distribution of quantum entanglement to two or more distant
parties is the essential operation that powers nearly all quantum
information protocols, such as quantum key distribution [1–3],
quantum teleportation [4–7], quantum secret sharing [8,9],
quantum secure direct communications [10,11], determinis-
tic secure quantum communications [12–14], and connecting
quantum processing nodes [15,16]. For the practical deploy-
ment of long-distance quantum communications protocols,
distribution of entanglement through noisy quantum channels
remains a critical unsolved gap [17,18]. Indeed, the presence of
noise within the quantum transmission channels, via free space
or optical fibers, is nearly unavoidable because it can come from
stray light, the cross talk of co-propagating signals, or can be
generated by linear and nonlinear effects in the transmission
medium itself [19,20]. The effects of noise to a quantum state
can be described fully by a few quantum error models [21]; for
instance, after being transmitted through quantum channels
with depolarizing noise, a perfectly prepared entangled state,
|φ(+)〉 = (|00〉 + |11〉)/

√
2, quickly degrades to a partially mixed

state, ρ = (1− p)|φ(+)〉〈φ(+)| + p1/4, where 1 is the identity
operator. Quantum operations cease to be possible at p > 2/3
because there would be no entanglement shared between two
distant quantum nodes.

Given the importance of entanglement distribution for quan-
tum information, a substantial effort for noise suppression within
transmission channels has led to impressive demonstrations of
long-distance quantum communications in recent years. Noise
suppression is, however, a practical strategy limited to specific
experimental conditions that may fall short of enabling the
widespread implementation of quantum protocols. In terms of
robustness to noise, entanglement of high dimensional quan-
tum states (qudits) may offer an advantage over entangled qubits
[22,23], but it depends heavily on the noise and channel char-
acteristics as well as the detection modality [24]. Moreover, the
actual viability of such protocols is not clear, given the added exper-
imental and theoretical complexities of qudits and the fact that
the majority of quantum information protocols are qubit-based.
In this paper, we address, for what we believe is the first time, the
fundamental fragility of entanglement distribution in qubit-based
quantum communications systems by enhancing their ability to
withstand quantum state degradation within noisy channels in a
practically deployable fashion via hyperentanglement.

Hyperentanglement refers to a multipartite quantum state
that is simultaneously entangled in two or more separate degrees
of freedom, e.g., position–momentum, energy–time, polariza-
tion, orbital angular momentum, and time bin [25–27], and it
has been used for demonstrating certain quantum information
protocols such as high-capacity encoding [28] and superdense
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teleportation [29,30]. Here, in contrast to previous utilizations
of hyperentanglement, our scheme does not require modification
of the intrinsic quantum communications protocol under exam.
Indeed, our noise-resistant protocol can be directly applicable to
all the qubit-based communications protocols. Instead, we take
advantage of the fundamental property of hyperentanglement;
i.e., the additional quantum correlation in a different Hilbert
space to efficiently discriminate the signal photons from noise
photons coming from other sources, resulting in a several orders
of magnitude enhancement of the SNR. We demonstrate that our
hyperentanglement-based protocol enables extremely robust dis-
tribution of polarization-entangled photons even in the presence
of strong noise that would otherwise preclude quantum operations
due to noise-induced entanglement sudden death. Being rooted
in the inherent essence of hyperentanglement, the strategy we
report here is generally applicable to a wide-ranging set of quantum
communications protocols under current development with nearly
no modifications.

2. RESULTS AND DISCUSSION

A conceptual scheme of the protocol is shown in Fig. 1(a). A pair
of photons hyperentangled in polarization and frequency-time
degrees of freedom is prepared and sent to two distant parties,
Alice and Bob, via optical fibers where white noise is purposefully
introduced to simulate noisy quantum channels. Incidentally,
spontaneous parametric down-conversion (SPDC), the workhorse
of photonic entanglement, can naturally produce two-photon
states hyperentangled in polarization and frequency-time. The
polarization degree of freedom constitutes the qubit, and the

goal of the protocol is to distribute a pair of entangled qubits to
Alice and Bob even via highly noisy quantum channels while
maintaining a high SNR. To do so, we use the frequency-time
entanglement of the photon pair [31–34], simultaneously present
with the polarization entanglement. Note that, in a traditional
protocol without using hyperentanglement, the detection module
cannot distinguish the signal-entangled photons from the noise
photons; hence, at a constant signal, the SNR degrades with the
number of noise photons. In our scheme, before being detected,
the two photons go through dispersive stages, acquiring chirp and
anti-chirp, respectively, and the frequency-anticorrelation prop-
erty of the SPDC photons makes possible the lossless conversion
of the correlated frequency bins to the correlated time bins via
dispersive media, enabling frequency-selective detection of pho-
tons based on the time-of-arrival measurements [35–37]. The pair
photons that are anti-correlated in frequency will result in equal
time coincidence clicks, while the noise photons with no frequency
relation will elicit clicks at random time differences. To better
visualize the noise-resistant property provided by the protocol, we
divide detection in N frequency bins per detection station and thus
imagine the coincidence counting as an N × N matrix featuring all
possible frequency-bin combinations. The polarization-entangled
photons, further endowed with frequency-anticorrelation due
to hyperentanglement, will spread along the 1D diagonal of the
matrix, while the noise photons will evenly spread across the whole
2D plane, as shown in Fig. 1(b). In other words, while the signal
remains constant because it is fully captured in the diagonal ele-
ments, the noise is randomly and uniformly distributed in the 2D
plane; hence, reduced by N/N2. Thus, frequency-resolved detec-
tion via gated coincidence measurement enables effective rejection

Fig. 1. (a) Conceptual schematic of noise-resistant quantum communications using polarization-frequency hyperentanglement. To distribute polariza-
tion entanglement to Alice and Bob through noisy quantum channels, frequency-time entanglement of the photons is used. The frequency-anticorrelation
property of the photons makes possible the lossless conversion of the correlated frequency bins to the correlated time bins via dispersive media. Gated coinci-
dence detection effectively performs measurement of correlated frequency bins. (b) Due to the frequency-anticorrelation nature of the photon pairs, the cor-
related frequency bins are anti-diagonally distributed, while the white noise from the quantum channels is not. Each correlated frequency bin represents a
probability amplitude of a polarization-entangled photon pair. Frequency-resolved detection via gated coincidence measurement enables effective rejection
of white noise, making possible noise-resistant quantum communications.
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of all off-diagonal white noise in the matrix and, therefore, com-
pared to ordinary quantum communications protocols relying
on direct distribution of polarization entanglement, our protocol
relying on polarization/frequency hyperentanglement gives rise to
an N scaling advantage in SNR, making possible noise-resistant
quantum communications. We first present the theoretical and
numerical analysis of our protocol under realistic scenarios. We
then describe the experimental implementation of the protocol,
demonstrating the SNR improvement as well as entanglement
distribution in the presence of strong noise.

The effects of the quantum noise to a pure maximally entangled
state can be described by mixing the entangled state with a white
noise state. As we consider the polarization-frequency hyper-
entangled state, the noisy polarization-frequency hyperentangled
quantum stateρh may be described as

ρh = (1− p)|φ(+)〉〈φ(+)| ⊗ |ψ〉〈ψ | +
p

4N2
1pol ⊗ 1freq, (1)

where p (0≤ p ≤ 1) is the noise portion, |φ(+)〉 =
1
√

2
(|H H〉 + |V V 〉), and |ψ〉 =

∑N
n=1

1
√

N
|n〉1|n〉2 is the N-

dimensional frequency entangled state. The identity operators
1pol and 1freq denote, respectively, the white noise states in the
polarization and in the frequency degrees of freedom. Here, 4N2

represents the dimensional normalization for the white noise term.
From Eq. (1), we first define the critical noise portion pc at which
the two-qubit state has no polarization entanglement and, by using
the separability criterion for a density matrix [38,39], it is found to
be pc = 2N/(1+ 2N). Note that if pc < 1, the phenomenon is
known as entanglement sudden death [40–44]. As the critical noise
portion approaches one with a large N, the distribution of polariza-
tion entanglement becomes more robust to noise. Additionally, for
the noisy entangled state in Eq. (1), the SNR is found to be

SNR= 2N(1− p)/p . (2)

For more details, see Appendices A, B, and C. Note that at p = pc ,
SNR becomes unity regardless of the dimension N. The noisy
entangled state in Eq. (1) has nonzero entanglement if the
measured SNR value exceeds one.

In our protocol, the SPDC photons are frequency-binned into
N channels such that, for each channel, the channel efficiency
(including the overall quantum channel transmission efficiency
αch and the detector efficiency αd) is α = αchαd, the dark count
probability (per gate pulse) of a detector is d , and the detection
probability (per gate pulse) of the background noise is b. If the aver-
age number of SPDC photon pairs per pulse isµ, the expression for
the SNR is given as

SNR=
µα2

2N
(
µ

2Nα + d + b
2N

)2 , (3)

where we have assumed for simplicity that all N channels have
identical properties (see Appendices A, B, and C for details).
The results of the numerical simulation are shown in Fig. 2. As
the frequency-resolved detection for the N correlated frequency
bins is made possible by converting them into N correlated time
bins, a detector having a faster rise time would enable tighter
frequency-resolved detection. For the simulation, we assumed a
rather weak SPDC process, µ= 0.02, and the overall quantum
channel efficiency of αch = 0.5 for each photon. Considering
the typical parameters of an InGaAs detector (d = 6× 10−6 and

Fig. 2. SNR for entanglement distribution via noisy quantum chan-
nels. Here, we have assumed µ= 0.02, αch = 0.5, and typical parameters
of an InGaAs detector (d = 6× 10−6 and αd = 0.15) and SNSPD
(d = 6× 10−8 and αd = 0.8). Due to the contributions of the dark
counts, SNR reaches a maximum value and decreases with increasing
N. Even for highly noisy quantum channels (i.e., a large initial noise
portion p1), high SNR entanglement distribution is possible by choosing
a suitable correlated time-bin division N.

αd = 0.15) and an SNSPD (d = 6× 10−8 and αd = 0.8) at the
telecom wavelength, the numerical simulation of Eq. (3) shown
in Fig. 2 confirms that the white noise subtraction becomes more
prominent as N is increased. It is important to point out that SNRs
reach different maximum values and decrease with increasing N
due to the contributions of the dark counts, as shown in Fig. 2.
Clearly, there is an optimum value of N that maximizes SNR for
a given initial noise portion p1 and the detector properties. The
numerical simulation clearly demonstrates that, even for highly
noisy quantum channels represented by a large initial noise portion
p1, high SNR entanglement distribution is possible by choosing a
suitable correlated time-bin division N. In particular, in Fig. 2, we
have demonstrated that, showing up to three orders of magnitude
SNR improvement for traditional InGaAs detectors and up to
nearly six orders of magnitude SNR improvement for SNSPDs.

We now describe the experimental demonstration of the
protocol to confirm the SNR improvement in quantum com-
munications, even in the presence of strong noise that would
otherwise cause entanglement sudden death. The schematic of
the experiment, based on a fiber-optic setup, is shown in Fig. 3.
To prepare polarization-frequency hyperentanglement of two
photons in telecom wavelength, we use the type-0 SPDC process
in a PPLN crystal pumped by the second harmonic of a picosecond
mode-locked fiber laser. While frequency entanglement of the
photon pair is naturally provided by the SPDC process, to prepare
the polarization-entangled state, we make use of an unbalanced
Michelson interferometer (UMI) for the pump pulse and a phase-
stabilized unbalanced polarization Mach–Zehnder interferometer
for the SPDC photons [45,46]. For more details, see Appendices A,
B, and C. The polarization-frequency hyperentangled state of the
photon pair is then given as

1
√

2
(|H H〉 + |V V 〉)⊗

∫
dω1dω2 f (ω1, ω2)|ω1, ω2〉, (4)

where f (ω1, ω2) is the joint spectral amplitude of the two-photon
state, exhibiting frequency anti-correlation between the two
photons. The full spectral bandwidth | f (ω1, ω2)|

2 of the SPDC
photons is roughly 80 nm at FWHM centered at 1552.52 nm. In
our experiment, we make use of roughly 10 nm flap-top regions
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Fig. 3. Experimental setup for noise-resistant polarization-entanglement distribution using hyperentanglement. Second-harmonic of a pulsed laser
(λp = 1,552.52 nm and δλp = 0.15 nm) produces a pair of frequency-anticorrelated entangled photons via the type-0 SPDC process in a PPLN crys-
tal. Polarization entanglement is generated by quantum interference at the unbalanced Mach–Zehnder interferometer constructed with PBS and PBC.
The spectral properties of the photons are λ1 = 1,545.32 nm δλ= 9.56 nm for photon 1 (to Alice) and λ2 = 1,559.79 nm δλ2 = 9.74 nm for photon
2 (to Bob). The white noise is sourced from a C-band laser and is bandwidth matched to photon 1 and photon 2. Conversion from the frequency-bin
to the time-bin modes is accomplished with a pair of DWDM DEMUX and a MUX connected by optical fibers of different lengths. UMI, unbalanced
Michelson interferometer; PPLN, periodically poled lithium niobate; SHG, second-harmonic generation; SPDC, spontaneous parametric downconver-
sion; PC, polarization controller; FS: fiber stretcher, EPS, electronic polarization controller; PBS, polarizing beam splitter; PBC, polarizing beam combiner;
CWDM, coarse wavelength division multiplexing; L, lens, HWP, half-wave plate; and SPD, single photon detector.

of the spectral bandwidth for the frequency-entangled photons:
For photon 1, the central wavelength is λ1 = 1,545.32 nm and the
bandwidth is δλ1 = 9.56 nm; for photon 2, the central wavelength
is λ2 = 1,559.79 nm and the bandwidth is δλ2 = 9.74 nm. To
test the noise-resistant feature of the protocol, it is necessary to
introduce white noise to the entangled state so that the state in
Eq. (1) can be prepared. In our experiment, we use a broadband
telecom C-band light source, which is bandwidth-matched to
those of photon 1 and photon 2. The attenuated white noise is
then introduced to the fiber optic channel to Alice and Bob via a
99:1 coupler. The noise portion in Eq. (1) can be measured in the
experiment as the ratio of the rate of noise counts and the rate of
total counts at a detector.

At the heart of the protocol is to discretize the correlated spectra
of the polarization-frequency hyperentangled photon pairs and to
deterministically map the correlated frequency bin measurement
to the correlated time-bin measurement. If photon 1 and photon
2 spectra are each discretized into N bins, the quantum state in
Eq. (4) can be written as

1
√

2
(|H H〉 + |V V 〉)⊗

N∑
n=1

1
√

N
|n〉1|n〉2, (5)

where N is the total number of frequency bins and |n〉1|n〉2
refers to the quantum state of the correlated frequency bin n for
photon 1 and photon 2. Instead of using dispersive chirp and
anti-chirp media, as shown in Fig. 1, for frequency-bin to time-
bin mapping, in our experiment, we use readily available dense
wavelength division multiplexing (DWDM) components in the
telecom band. By using a demultiplexer (DEMUX), we divide the
available single-photon spectra into up to six spectral channels,
each with a FWHM bandwidth of 1.2 nm and channel spacing
of 1.6 nm. The six DEMUX output channels are connected to
optical fibers of different lengths and fiber polarization controllers.
They are then recombined into a single-mode optical fiber by

using a multiplexer (MUX). The frequency-bin separation of
1.6 nm thus is converted into the time-bin separation of 2.5 ns.
Therefore, the joint spectrum analysis for photon 1 (spectral range
between 1540.56 nm and 1550.12 nm) and photon 2 (spectral
range between 1554.94 nm and 1564.67 nm), schematically
shown in Fig. 1(b), can be performed in an experiment by meas-
uring the 6× 6 temporal correlation in the photons’ arrival times
at the InGaAs detectors using a coincidence counting device.
Measurement on the polarization qubits can be done for each
correlated time bin by using the standard polarization qubit analy-
sis technique with a half-wave plate, a quarter-wave plate, and a
polarizing beam splitter. For the correlated time-bin measurement,
the detector’s gate window is set at 1.5 ns. From the measurement,
we reconstruct the 6× 6 matrix that represents the frequency-bin
entanglement and each correlated frequency bin represents a prob-
ability amplitude of a polarization-entangled photon pair. The
6× 6 correlated frequency bins may be summed up to study the
effect of more coarse frequency binning (e.g., 2× 2 and 3× 3) to
the SNR.

The experimental SNR measurements for the polarization-
entanglement distribution via noisy channels with hyperentangled
discretized frequency-bin entanglement are shown in Fig. 4. For a
given value of the noise portion p , we determine the experimental
SNR values as a function of the number of frequency bins N. The
noise portion p was determined from the ratio of the coincidence
rate due to the noise only versus that due to both the signal and the
noise. The SNR measurements were performed in the computa-
tional basis; i.e., |H H〉 and |V V 〉. It is clear from Fig. 4(a) that our
method improves the SNR quite significantly, even with a strong
noise in the quantum channels, by introducing more frequency
bins. In Figs. 4(b) and 4(c), the N × N measurement matrices are
shown, revealing the effect of N binning detection (i.e., frequency
binning) to the SNR for different values of the noise portion p .
Note that for N = 1, the system is incapable of discriminating
the signal and the noise photons; however, for N = 2, 3, and 6,
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(a)

(b)

(c)

Fig. 4. SNR measurement data. (a) If the channel-induced noise
portion p is high, tighter frequency-resolved detection (i.e., larger N),
helps to increase SNR for polarization entanglement distribution. The
error bars represent one standard deviation. The solid lines are due to the
SNR equation in Eq. (2). The N × N measurement matrices are shown
(b) for the noise portion p = 0.2 and (c) for the noise portion p = 0.74.
Measurement outcomes due to polarization entangled photons are dis-
tributed only along the diagonal while those of the noise are distributed
uniformly across the matrix. These figures clearly demonstrate the SNR
improvement mechanism conceptually shown in Fig. 1(b). The data are
accumulated for 90 s.

the off-diagonal matrix elements are clearly identifiable as noise.
Thus, the diagonal elements deal with significantly reduced noise.
These data figures clearly demonstrate the SNR improvement
mechanism conceptually shown in Fig. 1(b). Due to the frequency
entanglement of the photon pair (simultaneously present with
the polarization entanglement), the signal events are distributed
along the diagonal of the N × N matrix, while the white noise is
distributed evenly. Thus, by using a larger N, it becomes possible
to significantly improve the SNR in distributing polarization
entanglement, even with a strong noise in the quantum channel.

Next, we study the quality of polarization entanglement dis-
tributed to Alice and Bob via noisy quantum channels by varying
the noise portion p and the number of frequency bins N. First,
for a given value of the noise portion p , the two-qubit polariza-
tion state is fully characterized with quantum state tomography
(QST) for N = 1, 2, 3 and 6. The two-qubit density matrix ρ
obtained from QST is then used to evaluate the linear entropy
SL =

4
3 (1−Tr[ρ2

]) and the concurrence C(ρ) of the two-qubit
state [47]. The linear entropy for a two-qubit state ranges from zero
for the case of a pure state and 1 for a maximally mixed state. The
experimental results for the linear entropy are shown in Fig. 5(a). As
the noise portion p is increased, it is clear that the two-qubit state
becomes more mixed. However, as the number of frequency bins
N is increased, the linear entropy is significantly reduced, implying
that the two-qubit state shared between Alice and Bob becomes

Fig. 5. Noise-resistant distribution of polarization entanglement
using polarization-frequency hyperentanglement. Due to the N-binning
detection (i.e., frequency binning), even for a large noise portion p ,
the distributed two-qubit state exhibits (a) significantly decreased lin-
ear entropy and (b) dramatically increased concurrence. Note that for
p ≥ 0.667, entanglement sudden death occurs as evidenced in the con-
currence for N = 1 (i.e., pc = 2/3 at N = 1). N binning detection,
however, enables entanglement distribution even via highly noisy quan-
tum channels. The solid lines represent the theoretical curves from the
mixed two-qubit entanglement model. The error bars represent one
standard deviation. The dashed lines and the data point below zero are due
to λ1 − λ2 − λ3 − λ4.

more pure. This is consistent with the data in Fig. 4(a), which
shows an improvement of the SNR (i.e., an effective reduction of
the noise), by using a larger N.

Figure 5(b) shows the concurrence C(ρ) evaluated from
the QST-reconstructed two-qubit density matrix ρ as the
noise portion p is increased. Concurrence ranges from zero
(i.e., no entanglement) to 1 (i.e., the Bell state) and is defined as
C(ρ)=max(0, λ1 − λ2 − λ3 − λ4), where λi are the eigenval-
ues of the Hermitian matrix defined from ρ. Naturally, as p is
increased, the concurrence of the two-qubit polarization state ρ is
decreased. However, by using a larger N, we are able to dramati-
cally increase concurrence between the two polarization qubits
distributed to Alice and Bob. It is interesting to note that when
N = 1 (the case of the ordinary detection method without relying
on polarization-frequency hyperentaglement), entanglement
sudden death occurs when p = 0.667. In Fig. 5(b), the dashed
lines and the data point below the zero concurrence value are
due to λ1 − λ2 − λ3 − λ4. Physically, it means that there is no
entanglement. Remarkably, even in the case where noise is strong
enough so that entanglement sudden death would make distribu-
tion of two-qubit polarization entanglement impossible, by using
polarization-frequency hyperentanglement and frequency binning
with a larger N, we are able to distribute nonzero entanglement to
Alice and Bob.
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3. CONCLUSION

Entanglement, the most critical resource in quantum information,
is also the most fragile to the noise-induced degradations. In this
work, we have proposed and demonstrated that hyperentangled
degrees of freedom can be effectively employed to enable reliable
entanglement distribution through noisy quantum channels. In
particular, we have shown theoretically and experimentally that
our protocol could result in an orders of magnitude increase in
the SNR for polarization-entanglement distribution through
highly noisy quantum transmission channels, enabling quantum
communications even in the presence of strong noise that would
otherwise preclude quantum operations due to noise-induced
entanglement sudden death. Our protocol is qubit-based; hence, it
does not require the complexity overhead of qudit-based protocols.
The preparation of polarization-frequency hyperentanglement
necessary for the protocol is simple using spontaneous paramet-
ric downconversion in a nonlinear crystal, and the components
required for mapping correlated frequency bins to correlated
time bins are readily available in the telecom band. Note that the
noise-resistant feature may be significantly improved by optimiz-
ing the degree of energy-time correlation and using narrowband
components for frequency binning. Moreover, being rooted in
the inherent essence of hyperentanglement, the strategy we report
here is generally applicable to a wide-ranging set of quantum com-
munications protocols under current development with nearly
no modifications. Finally, it is interesting to note that our scheme
may be easily adopted for the distribution of entangled qudits
by using energy-time hyperentanglement of the two-photon
state, an approach that would greatly improve the noise-resistant
feature of qudit entanglement far beyond what can be achieved
naturally with entangled qudits alone. Therefore, we believe the
scheme described in this work paves the way toward a universally
adoptable practical strategy to withstand noise, by several orders of
magnitude, in quantum communications via noisy channels.

APPENDIX A: POLARIZATION-FREQUENCY
HYPERENTANGLEMENT

A picosecond mode-locked fiber laser (FPL-02CTT, Calmar Laser)
operating at the center wavelength of 1552.52 nm (the FWHM
bandwidth of 0.4 nm and the repetition rate of 18.02 MHz) is fre-
quency doubled at the bulk type-0 PPLN crystal, which is 35 mm
long and has the poling period of 19.3 µm. The pump pulse
(λp ≈ 776.26 nm) generates the broadband frequency-entangled
45◦ polarized SPDC photon pair |DD〉 centered at 1552 nm at
the waveguide-type type-0 PPLN, which is 20 mm long and has
the poling period of 17.0 µm. To prepare polarization-frequency
hyperentanglement, as shown in Fig. 3, we make use of the time-
bin entanglement generation scheme based on an unbalanced
Michelson interferometer (UMI) for the pump pulse and a phase-
stabilized unbalanced polarization Mach–Zehnder interferometer
for the SPDC photons [45,46,48]. In the end, three two-photon
amplitudes (|H H〉, (|H H〉 + |V V 〉)/

√
2, and |V V 〉) are cre-

ated in time, separated by 20.8 ns. The middle amplitude is
post-selected to prepare the Bell state (|H H〉 + |V V 〉)/

√
2 in a

single spatial mode. As photon 1 and photon 2 are chosen to have
nondegenerate central wavelengths of λ1 = 1,545.32 nm and
λ2 = 1,559.79 nm, respectively, they are eventually separated into
two spatial modes by using a CWDM acting as a notch filter, which
transmits photon 1 to Alice and reflects photon 2 to Bob. Alice and
Bob therefore receive the polarization-frequency entangled photon
pair in the state shown in Eq. (4).

APPENDIX B: INTERFEROMETERS

Two interferometers are used in the experiment: an unbalanced
Michelson interferometer (UMI) for the pump and an unbalanced
Mach-Zehnder interferometer (UMZI) for the SPDC photons.
They are used, respectively, to introduce and to compensate for the
time delay of 20.8 ns. The UMI consists of two Faraday mirrors
for auto-compensating polarization mode dispersion, a variable
delay line for fine-tuning the time delay, and a piezo-actuated fiber
stretcher for precise phase control. The UMZI introduces the set
time delay of 20.8 ns between |H〉 and |V 〉 polarization modes
by using a fiber optic polarizing beam splitter and a fiber optic
polarizing beam combiner. The |H〉 path is implemented with a
polarization-maintaining fiber while the |V 〉 is implemented with
a standard single-mode fiber, a variable delay line, a piezo-actuated
fiber stretcher, and an electronically driven fiber polarization con-
troller. To actively stabilize the interferometers, we use an auxiliary
cw laser at 1553.33 nm whose coherence time is significantly
larger than the time delay at the interferometers. Active phase
stabilization of the interferometers is accomplished by monitoring
the interference signals of the auxiliary cw laser and using them to
feedback control the piezo-actuated fiber stretcher.

APPENDIX C: NOISY TWO-QUBIT STATES AND
SNR

Noise in the quantum transmission channel degrades an initial
pure polarization-frequency hyperentangled two-qubit state,
resulting in a mixed state shown in Eq. (1). In our protocol,
only the correlated frequency bins are relevant for the frequency
degree of freedom; thus, Eq. (1) is simplified to ρpol =

∑n=N
n=1

〈nn|ρh |nn〉 =A{(1− p)|φ(+)〉〈φ(+)| + p1pol/4N}, where A=
(1+ p(1/N − 1))−1 is the renormalization constant. The
critical noise portion pc , which is the maximum value of
the noise portion p for the state to have nonzero entangle-
ment, can be calculated using the positive partial transpose
criterion; i.e., (1⊗ T)ρpol ≥ 0 [38,39]. For the minimum
eigenvalue to be positive, pc = 2N/(1+ 2N). In addition,
the two qubit state ρpol has the signal contribution equal to∑H H,V V

i 〈i |A(1− p)|φ(+)〉〈φ(+)|i〉 =A(1− p). Similarly, the
noise contribution is evaluated to be

∑
i 〈i |p1pol/4N|i〉 =Ap/

2N. Thus, we obtain the SNR expression in Eq. (2).
In our protocol, SNR is the ratio of the joint detection rate due

to the two-qubit quantum state and the coincidence rate arising
from the noise that cannot be removed from the correlated fre-
quency bin detection. While the signal is only distributed along
the diagonal in the correlated frequency bins, the noise is evenly
distributed, see Fig. 1(b). Thus, although the correlated frequency
bin detection removes all the off-diagonal noise contributions, the
noise present in the diagonal terms would reduce SNR. The overall
joint count rate can be expressed as

2∑
x=1

(
N∑

j=1

µ

2N
α1,x , jα2,x , j

+

N∑
j=1

(
µ

2N
α1,x , j + d1,x , j +

b1

2N

)(
µ

2N
α2,x , j + d2,x , j +

b2

2N

)

+

N∑
i, j=1,i 6= j

(
µ

2N
α1,x ,i + d1,x ,i +

b1

2N

)(
µ

2N
α2,x , j + d2,x , j +

b2

2N

))
,
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where subscripts 1 and 2 refer to photon 1 and photon 2, x refers
to the polarization qubit measurement basis, and i refers to the i th
frequency bin. Here, the first term is the signal due to the two-qubit
quantum state, the second term refers to noise in the diagonal bins,
and the third term can be removed by the correlated frequency
bin detection. The SNR thus can be written as the ratio of the first
term and the second term. Assuming that all N channels have
identical properties, we arrive at the SNR expression in Eq. (3).
Note, however, that in our setup in Fig. 3 to prepare polarization
entanglement we make use of the time bin post-selection scheme
and this changes the count rate slightly, affecting the SNR expres-
sion. The revised SNR expression for our specific setup is given as
µα2

8N (
µ

4Nα + d + b
2N )
−2, which is slightly different from Eq. (3).

The experimental SNR values in Fig. 4(a) have been evaluated with
this form. Note that, if the polarization-frequency hyperentangled
photons were generated directly from the nonlinear crystal, Eq. (3)
would need to be used.
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