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Abstract: Decoherence due to the unwanted interaction between a quantum system and environment
leads to the degradation of quantum coherence. In particular, for an entangled state, decoherence
makes a loss of entanglement and Bell nonlocality known as entanglement sudden death (ESD), and
Bell nonlocality sudden death (BNSD). Here, we theoretically investigate the entanglement and Bell
nonlocality of a bipartite entangled state under three types of decoherence, amplitude damping,
phase damping, and depolarizing. Our result provides the bound of decoherence strength that does
not lose the entanglement and Bell nonlocality. In addition, we find two interesting features. One
is that the entanglement can survive even though one of the entangled qubits is affected by a large
strength of decoherence if the other qubit is affected by a small enough strength of decoherence
except for the depolarizing. The second one is that when a specific form of entangled state is under
amplitude damping, the Bell nonlocality shows an asymmetric behavior respect to the decoherence
strengths on each qubit. Our work provides comprehensive information on ESD and BNSD for the
bipartite entangled state which will be useful to implement quantum information processing in the
presence of decoherence.

Keywords: decoherence; entanglement sudden death; bell nonlocality sudden death

1. Introduction

Entanglement, which is a physical phenomenon that a quantum state of multi-qubit
cannot be factored as a product of the individual qubit states [1], has been utilized as a
basic resource of quantum information processing such as quantum communication [2,3],
quantum teleportation [4–6], quantum computation [7], and quantum metrology [8]. One
of the features of the entangled state is that a quantum nonlocal correlation can be obtained
by local measurements on the distant entangled qubits, which is incompatible with a local
hidden variable theory. This is the so-called Bell nonlocality [9]. Bell nonlocality also
has been applied to the quantum cryptograph to analyze the security of quantum key
distribution protocols [10–13].

When an entangled state is under decoherence due to the unwanted interaction be-
tween a quantum system and environment, quantum coherence is degraded which leads
to the degradation of entanglement and Bell nonlocality [14]. Eventually, the effect of deco-
herence disturbs to implementation of various quantum information processing properly.
In order to perform a proper quantum information processing under the decoherence,
entanglement purification protocols such as entanglement distillation [15–17] and entan-
glement concentration [18,19] can be used to recover a maximally entangled state using a
large number of copies of partially entangled states. Even a poorly entangled state can be
restored to a highly entangled state with the help of the entanglement purification protocols.
However, when the decoherence makes a loss of entanglement and Bell nonlocality known
as entanglement sudden death (ESD) [20] and Bell nonlocality sudden death (BNSD) [21],
it is not possible to apply the entanglement purification protocols which prohibits any
quantum information tasks. Therefore, it is of importance to investigate the ESD and BNSD
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of an entangled state in the presence of decoherence and to find the bound of decoherence
strength where the entanglement and Bell nonlocality are persisted.

It has been widely studied that the effect of decoherence on a bipartite entangled
state results in ESD and BNSD both in theory and experiment [22–27]. However, these
studies have been focused on the two types of decoherence, amplitude damping and phase
damping. Moreover, it has been assumed that each qubit is affected by the same strength
of decoherence which is not a realistic situation in the quantum information protocol that
utilized the distributed entangled qubits.

In this paper, we theoretically investigate the entanglement and Bell nonlocality of
the bipartite entangled state under three types of decoherence, amplitude damping, phase
damping, and depolarizing which are the elemental noise models in quantum systems.
In addition, for further study, we assume that each qubit of entangled qubits is affected by
the different strengths of decoherence to investigate the ESD and BNSD. Our result shows
that ESD occurs for a specific form of bipartite entangled state under amplitude damping
while ESD does not occur under phase damping and occurs under depolarizing. In the
case of Bell nonlocality, BNSD always occurs under amplitude damping and depolarizing,
and does not occur under phase damping. Moreover, we find two interesting features
for the case of that each qubit of entangled qubits is affected by the different strengths of
decoherence. One is that the entanglement can survive even though one of the entangled
qubits is affected by a large strength of decoherence if the other qubit is affected by a
small enough strength of decoherence except for the depolarizing. The second one is that
when a specific form of entangled state is under amplitude damping, the Bell nonlocality
shows an asymmetric behavior respect to the decoherence strengths on each qubit. Our
work provides comprehensive information on ESD and BNSD for the bipartite entangled
state which will be useful to implement quantum information processing in the presence
of decoherence.

2. Materials and Methods
2.1. Bipartite Entangled State under Decoherence

Decoherence caused by an unavoidable coupling between a system and environment
can be expressed by operations acting on the system [22,28]. Given a single qubit state ρ,
the system coupled to the environment can be written as

ρ→ E{ρ} =
n

∑
i=1

EiρE†
i , (1)

where E is a decoherence channel, and Ei are the so-called Kraus operators satisfying
∑n

i=1 E†
i Ei = 1. For the three types of decoherence, amplitude damping, phase damp-

ing, and depolarizing, the corresponding Kraus operators described with a strength of
decoherence D are shown in Table 1.

Table 1. Kraus operators representing three types of decoherence. Here, 0 ≤ D ≤ 1 is the magnitude
of the decoherence and D̄ = 1− D. σ̂x,y,z are the Pauli matrices.

Decoherence Kraus Operators

Amplitude damping E1 = |0〉〈0|+
√

D̄|1〉〈1|,
E2 =

√
D|0〉〈1|.

Phase damping E1 = |0〉〈0|+
√

D̄|1〉〈1|,
E2 =

√
D|1〉〈1|.

Depolarizing E1 =
√

1− 3D/41, E2 =
√

D/4σ̂x,
E3 =

√
D/4σ̂y, E4 =

√
D/4σ̂z.

Here, the strength of the decoherence D can be represented by the interaction time t
between the system and environment, D = 1− exp(−Γt) where Γ is a decay rate. If there
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is no interaction between the system and environment, D becomes zero, that is the sys-
tem does not lose the quantum coherence. When the interaction time goes to infinity,
the strength of decoherence becomes unity where the system completely loses the quantum
coherence. Note that the amplitude damping exhibits an asymmetric nature in which |1〉
experiences the damping effect while |0〉 is not affected.

For a two-qubit state ρAB, the state coupled to the environment can be described as:

ρAB → EA{EB{ρAB}} = EA
{ n

∑
i=1

EB
i ρABEB

i
†}

=
n

∑
j=1

n

∑
i=1

EA
j EB

i ρABEB
i

†
EA

j
†
, (2)

where A and B denote qubit A and qubit B, respectively. Now, we consider the pure
two-qubit entangled states, |Φ〉 = cos θ|0〉A|0〉B + sin θ|1〉A|1〉B, and |Ψ〉 = cos θ|0〉A|1〉B +
sin θ|1〉A|0〉B where 0 ≤ θ ≤ π/2 to investigate the entanglement and Bell nonlocality.

2.1.1. Amplitude Damping Channel

Amplitude damping channel (ADC) describes the effect of energy dissipation from a
quantum system. When qubits A and B are under ADC with the magnitude of decoherence
of DA(D̄A ≡ 1− DA) and DB(D̄B ≡ 1− DB), the state |Φ〉 becomes,

ρΦ,ADC =


ρ11,Φ 0 0 ρ14,Φ

0 ρ22,Φ 0 0
0 0 ρ33,Φ 0

ρ41,Φ 0 0 ρ44,Φ

, (3)

where ρ11,Φ = cos2 θ + DADB sin2 θ, ρ14,Φ = ρ41,Φ =
√

D̄AD̄B cos θ sin θ, ρ22,Φ = DAD̄B
sin2 θ, ρ33,Φ = D̄ADB sin2 θ, and ρ44,Φ = D̄AD̄B sin2 θ, respectively. Furthermore, the state
|Ψ〉 becomes,

ρΨ,ADC =


ρ11,Ψ 0 0 0

0 ρ22,Ψ ρ23,Ψ 0
0 ρ32,Ψ ρ33,Ψ 0
0 0 0 0

, (4)

where ρ11,Ψ = DA sin2 θ +DB cos2 θ, ρ22,Ψ = D̄B cos2 θ, ρ23,Ψ = ρ32,Ψ =
√

D̄AD̄B cos θ sin θ,
and ρ33,Ψ = D̄A sin2 θ, respectively.

2.1.2. Phase Damping Channel

Phase damping channel (PDC) describes the loss of quantum information without
loss of energy. When qubits A and B are under PDC with the magnitude of decoherence of
DA and DB, the state |Φ〉 becomes,

ρΦ,PDC =


ρ11,Φ 0 0 ρ14,Φ

0 0 0 0
0 0 0 0

ρ41,Φ 0 0 ρ44,Φ

, (5)

where ρ11,Φ = cos2 θ, ρ14,Φ = ρ41,Φ =
√

D̄AD̄B cos θ sin θ, and ρ44,Φ = sin2 θ, respectively.
Furthermore, the state |Ψ〉 becomes,

ρΨ,PDC =


0 0 0 0
0 ρ22,Ψ ρ23,Ψ 0
0 ρ32,Ψ ρ33,Ψ 0
0 0 0 0

, (6)

where ρ22,Ψ = cos2 θ, ρ23,Ψ = ρ32,Ψ =
√

D̄AD̄B cos θ sin θ, and ρ33,Ψ = sin2 θ.
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2.1.3. Depolarizing Channel

Depolarizing channel (DC) describes the white noise introduced to a quantum system.
When qubits A and B are under DC with the magnitude of decoherence of DA and DB,
the state |Φ〉 becomes,

ρΦ,DC =
1
4


ρ11,Φ 0 0 ρ14,Φ

0 ρ22,Φ 0 0
0 0 ρ33,Φ 0

ρ41,Φ 0 0 ρ44,Φ

, (7)

where ρ11,Φ = 1 + D̄AD̄B + (D̄A + D̄B) cos 2θ, ρ14,Φ = ρ41,Φ = 4D̄AD̄B cos θ sin θ, ρ22,Φ =
1− D̄AD̄B + (DB − DA) cos 2θ, ρ33,Φ = 1− D̄AD̄B + (DA − DB) cos 2θ, and ρ44,Φ = 1 +
D̄AD̄B − (D̄A + D̄B) cos 2θ, respectively. Furthermore, the state |Ψ〉 becomes,

ρΨ,DC =
1
4


ρ11,Ψ 0 0 0

0 ρ22,Ψ ρ23,Ψ 0
0 ρ32,Ψ ρ33,Ψ 0
0 0 0 ρ44,Ψ

, (8)

where ρ11,Ψ = 1 − D̄AD̄B + (DB − DA) cos 2θ, ρ22,Ψ = 1 + D̄AD̄B + (D̄A + D̄B) cos 2θ,
ρ23,Ψ = ρ32,Ψ = 4D̄AD̄B cos θ sin θ, ρ33,Ψ = 1 + D̄AD̄B − (D̄A + D̄B) cos 2θ, and ρ44,Ψ =
1− D̄AD̄B + (DA − DB) cos 2θ, respectively.

2.2. Entanglement Sudden Death

Entanglement is a physical phenomenon that a quantum state of multi-qubit cannot be
factored as a product of the individual qubit states. The entanglement of a given two-qubit
state ρ is quantified by the concurrence defined as:

C = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (9)

where λis are the Eigenvalues of

ρ(σy ⊗ σy)ρ
∗(σy ⊗ σy), (10)

in decreasing order [29]. When the concurrence becomes zero for DA < 1, and DB < 1,
which means a finite interaction time between the system and environment, we call this
phenomenon as the entanglement sudden death (ESD).

The Eigenvalues of Equation (10) for each quantum state are presented as follows. For
the state ρΦ,ADC, the Eigenvalues of matrix in Equation (10) are given as:

λ1 =
1
4

sin θ
[
D̄AD̄B(2 + 3DADB) sin θ

+ 2
√

2D̄AD̄B

√
(1 + DADB + (1− DADB) cos 2θ) sin2 2θ

+ D̄AD̄B(2− DADB) sin 3θ
]
,

λ2 =λ3 = DAD̄ADBD̄B sin4 θ,

λ4 =
1
4

sin θ
[
D̄AD̄B(2 + 3DADB) sin θ

− 2
√

2D̄AD̄B

√
(1 + DADB + (1− DADB) cos 2θ) sin2 2θ

+ D̄AD̄B(2− DADB) sin 3θ
]
.

(11)

For the state ρΨ,ADC, the Eigenvalues of matrix in Equation (10) are given as:

λ1 = D̄AD̄B sin2 2θ, λ2 = λ3 = λ4 = 0. (12)
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For the state ρΦ,PDC and ρΨ,PDC, the Eigenvalues of matrix in Equation (10) are given
the same as:

λ1 =
1
4

sin 2θ

[
(1 + D̄AD̄B) sin 2θ + 2

√
D̄AD̄B sin2 2θ

]
,

λ2 =
1
4

sin 2θ

[
(1 + D̄AD̄B) sin 2θ − 2

√
D̄AD̄B sin2 2θ

]
,

λ3 = λ4 = 0.

(13)

For the state ρΦ,DC and ρΨ,DC, the Eigenvalues of matrix in Equation (10) are given
the same as:

λ1 =
1

32

[
(D2

A(5− 12DB + 6D2
B)− 2DA(6− 13DB + 6D2

B)

+ DA(12− 5DA + 4DA(2− DB)DB − 2DB(9− 4DB)) cos 4θ

+ 2(8 + DB(−12 + 5DB)) sin2 2θ

+ 4
√

2D̄AD̄B[((2− DA)
2 − 2(2− DA)(1− 2DA)DB

+ (1− 2(2− DA)DA)D2
B − (D̄A + D̄B)

2 cos 4θ) sin2 2θ]
1
2

]
,

λ2 =λ3 =
1
16
[
(1− D̄AD̄B)

2 − (DA − DB)
2 cos2 2θ

]
,

λ4 =
1

32

[
D2

A(5− 12DB + 6D2
B)− 2DA(6− 13DB + 6D2

B)

+ DA(12− 5DA + 4DA(2− DB)DB − 2DB(9− 4DB)) cos 4θ

+ 2(8 + DB(−12 + 5DB)) sin2 2θ

− 4
√

2D̄AD̄B[((2− DA)
2 − 2(2− DA)(1− 2DA)DB

+ (1− 2(2− DA)DA)D2
B − (D̄A + D̄B)

2 cos 4θ) sin2 2θ]
1
2

]
.

(14)

By substituting the given Eigenvalues in Equation (9), the concurrence can be obtained.

2.3. Bell Nonlocality Sudden Death

Bell nonlocality is a quantum nonlocal correlation that can be obtained by local mea-
surements on the distant entangled qubits which is incompatible with a local hidden
variable theory. Bell nonlocality can be quantified by the maximum violation of a Bell in-
equality.

If a two-qubit state ρ is not factorable, there exist observables Â⊗ B̂, whose correlations
violate Bell’s inequality S = 〈Â ⊗ B̂〉 + 〈Â′ ⊗ B̂〉 + 〈Â ⊗ B̂′〉 − 〈Â′ ⊗ B̂′〉 ≤ 2, where
〈Â⊗ B̂〉 = Tr[Â⊗ B̂ρ]. The maximum value of Bell parameter S can be given by:

S = max[2
√

2λ1, 2
√

λ1 + λ2], (15)

where λ1 and λ2 are the non-negative real Eigenvalues of a matrix US = UT
ρ Uρ (λ1 is

the degenerated Eigenvalue) [30,31]. Here, the elements of the matrix Uρ is given by
Uρ,nm = Tr[σn ⊗ σmρ] where n, m ∈ {x, y, z}, and σx, σy, and σz are the Pauli matrices.
When the maximum value of Bell parameter does not exceed two for DA < 1, and DB < 1,
we call this phenomenon as the Bell nonlocality sudden death (BNSD).

The Eigenvalues of matrix US for each quantum state are presented as follows. For
the state ρΦ,ADC, the Eigenvalues of matrix US are given as:

λ1 = D̄AD̄B sin2 2θ,

λ2 = (cos2 θ + (1− 2DA)(1− 2DB) sin2 θ)2.
(16)
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For the state ρΨ,ADC, the Eigenvalues of matrix US are given as:

λ1 = D̄AD̄B sin2 2θ,

λ2 = (−1 + DA + DB + (−DA + DB) cos 2θ)2.
(17)

For the state ρΦ,PDC and ρΨ,PDC, the Eigenvalues of matrix US are given the same as:

λ1 = D̄AD̄B sin2 2θ, λ2 = 1. (18)

For the state ρΦ,DC and ρΨ,DC, the Eigenvalues of matrix US are given the same as:

λ1 = D̄2
AD̄2

B sin2 2θ, λ2 = D̄2
AD̄2

B. (19)

By substituting the given Eigenvalues in Equation (15), the maximum value of Bell
parameter can be obtained.

3. Results
3.1. Entanglement

Firstly, we assume that both qubits are under decoherence with an equal strength
DA = DB = D. In the case when the entangled state |Φ〉 is under ADC, ESD occurs when
θ > π/4 as shown in Figure 1a, while ESD does not occur when |Ψ〉 is under ADC as shown
in Figure 1b. Note that the asymmetric nature of ADC results in the asymmetric feature
of concurrence only for ρΦ,ADC with respect to θ = π/4. As shown in Figure 1c,d, ESD
does not occur for PDC and occurs for DC. In the case of PDC and DC, as the Eigenvalues
of the matrix in Equation (10) are the same for ρΦ and ρΨ, concurrence shows the same
results, i.e., C(ρΦ,PDC) = C(ρΨ,PDC) and C(ρΦ,DC) = C(ρΨ,DC). Note that both of the
concurrence for ρΦ,PDC and ρΦ,DC shows a symmetric behavior with respect to θ = π/4.
As the entangled state becomes separable when θ goes to zero or π/2, the concurrence
becomes zero regardless of the types and the strength of decoherence.

Figure 1. Theoretical results of concurrence (blue) as functions of D(= DA = DB) and θ for
(a) ρΦ,ADC, (b) ρΨ,ADC, (c) ρΦ,PDC, and (d) ρΦ,DC. Above C = 0 planes indicate the existence of
quantum entanglement. ESD occurs when the entangled state |Φ〉 with θ > π/4 is under ADC,
or any bipartite entangled state is under DC.

Next, we investigate the concurrence with the different strengths of decoherence
on qubits A and B for three different entangled states with θ = π/8(< π/4), θ = π/4,
and θ = 3π/8(> π/4). As shown in Figure 2a, ESD occurs when the entangled state |Φ〉
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with θ > π/4 is under ADC, and does not occur with θ ≤ π/4. When the entangled state
|Ψ〉 is under ADC, ESD does not occur for all regions of θ as shown in Figure 2b. In the
case of PDC, ESD does not occur (see Figure 2c) and in the case of DC, ESD occurs for
all regions of θ (see Figure 2d). The result of ESD occurring shows that the entanglement
can survive even though one of the entangled qubits is affected by a large strength of
decoherence if the other qubit is affected by a small enough strength of decoherence except
for the depolarizing.

Figure 2. Theoretical results of concurrence (blue) as functions of DA and DB with θ = π/8, θ = π/4,
and θ = 3π/8 for (a) ρΦ,ADC, (b) ρΨ,ADC, (c) ρΦ,PDC, and (d) ρΦ,DC. Above C = 0 planes indicate the
existence of quantum entanglement. As the concurrence shows a symmetric behavior with respect
to θ = π/4 for ρΨ,ADC, ρΦ,PDC, and ρΦ,DC, the concurrence shows the same results for θ = π/8 and
θ = 3π/8.
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3.2. Bell Nonlocality

Figure 3 shows the Bell parameter as functions of θ and the decoherence strength
with an equal strength, D = DA = DB. When the entangled state is under ADC, BNSD
occurs regardless of the form of the entangled state unlike the ESD (see Figure 3a,b).
Here, the asymmetric feature of ADC is also represented in the asymmetric result of Bell
parameter for ρΦ,ADC with respect to θ = π/4. As shown in Figure 3c,d, BNSD does not
occur for PDC and occurs for DC. In the case of PDC and DC, similarly to the concurrence,
as the Eigenvalues of the matrix of US are the same for ρΦ and ρΨ, Bell parameter shows
the same results, i.e., S(ρΦ,PDC) = S(ρΨ,PDC) and S(ρΦ,DC) = S(ρΨ,DC).

Figure 3. Theoretical results of Bell parameter (Green) as functions of D(= DA = DB) and θ for
(a) ρΦ,ADC, (b) ρΨ,ADC, (c) ρΦ,PDC, and (d) ρΦ,DC. Above S = 2 planes indicate the existence of Bell
nonlocality. BNSD occurs when the entangled state is under ADC, and DC.

Next, we investigate the Bell parameter with the different strengths of decoherence
on qubits A and B for three different entangled states with θ = π/8(< π/4), θ = π/4,
and θ = 3π/8(> π/4). As shown in Figure 4a,b, BNSD occurs regardless of the form
of the entangled state unlike the ESD. Interestingly, when the entangled state |Ψ〉 with
θ 6= π/4 is under ADC, the Bell parameter shows an asymmetric behavior with respect
to DA = DB (see Figure 4b for θ = π/8 and θ = 3π/8). In the case of the PDC and PC,
the BNSD does not occur and occurs for all regions of θ as shown in Figure 4c,d.
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Figure 4. Theoretical results of Bell parameter (Green) as functions of DA and DB with θ = π/8,
θ = π/4, and θ = 3π/8 for (a) ρΦ,ADC, (b) ρΨ,ADC, (c) ρΦ,PDC, and (d) ρΦ,DC. Above S = 2 planes
indicate the existence of Bell nonlocality. As the Bell parameter shows a symmetric behavior with
respect to θ = π/4 for ρΦ,PDC and ρΦ,DC, the Bell parameter shows the same results for θ = π/8 and
θ = 3π/8.

4. Discussion

We theoretically investigate the entanglement and Bell nonlocality of a bipartite
entangled state under three types of decoherence, amplitude damping, phase damping,
and depolarizing. We show that ESD occurs for a specific form of bipartite entangled state
under ADC while ESD always does not occur under PDC and occurs under DC. In the
case of Bell nonlocality, BNSD always occurs under ADC and DC, and does not occur
under PDC regardless of the form of bipartite entangled state. The theoretical result for
ESD and BNSD are summarized in Table 2. Note that all Bell nonlocal states are entangled
which satisfying a relation, Bell nonlocality ⊂ entanglement. We also find two interesting
features. One is that the entanglement can survive even though one of the entangled
qubits is affected by a large strength of decoherence if the other qubit is affected by a small
enough strength of decoherence except for the depolarizing. The second one is that when a
specific form of entangled state is under amplitude damping, the Bell nonlocality shows an
asymmetric behavior respect to the decoherence strengths on each qubit.
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Table 2. Entanglement sudden death (ESD), and Bell nonlocality sudden death (BNSD) for three
types of decoherence channel. © represents ESD and BNSD occur, and × represents ESD and BNSD
do not occur.

ESD BNSD

Amplitude Damping Phase Damping Depolarizing Amplitude Damping Phase Damping Depolarizing

θ ≤ π/4 × × © © × ©
θ > π/4 © for |Φ〉 × © © × ©

× for |Ψ〉

The quantum correlations are not only significant for the fundamental aspects in quan-
tum information but also for the applications in various quantum information processing
tasks. For instance, quantum communication [2,3] and quantum teleportation [4–6] utilize
the distributed entangled qubits as a resource, and Bell nonlocality has been applied to
the quantum cryptography to analyze the security of quantum key distribution proto-
cols [10–13]. In practice, however, these quantum information processing are not perfectly
implemented due to the noisy environment, and will not give any advantage compared to
the classical protocols when the entangled state completely loses its quantum coherence
resulting in ESD and BNSD. In this situation, any entanglement purification protocols
cannot be applied to recover the entanglement. Therefore, it is of importance to investigate
the entanglement and Bell nonlocality of an entangled state in the presence of decoherence.

While the effect of decoherence on a bipartite entangled state has been widely studied,
it has been lacked to study the effect of decoherence when the two qubits are under deco-
herence with different decoherence strengths. In particular, the quantum communication
protocols which utilizes the entangled state where the two qubits are distributed to two
distant parties, the different strength of decoherence on each qubit should be considered.
Our result provides the bound of decoherence strength that does not lose the entanglement
and Bell nonlocality by investigating the ESD and BNSD, and will help to implement the
quantum information processing properly.
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