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Weak-value amplification (WVA) provides a way for amplified detection of a tiny physical signal at the
expense of a lower detection probability. Despite this trade-off, due to its robustness against certain types of
noise, WVA has advantages over conventional measurements in precision metrology. Moreover, it has been
shown that WVA-based metrology can reach the Heisenberg limit using entangled resources, but preparing
macroscopic entangled resources remains challenging. Here, we demonstrate a novel WVA scheme based
on iterative interactions, achieving the Heisenberg-limited precision scaling without resorting to
entanglement. This indicates that the perceived advantages of the entanglement-assisted WVA are in
fact due to iterative interactions between each particle of an entangled system and a meter, rather than
coming from the entanglement itself. Our work opens a practical pathway for achieving the Heisenberg-
limited WVA without using fragile and experimentally demanding entangled resources.
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Precise measurement of an interaction parameter is
essential for studying various quantum physical effects.
The interaction parameter can be estimated from the state
change of a meter after interacting with a system. Since
the system and the meter are generally entangled by the
interaction, postselection of the system collapses the
meter’s state: an elaborate postselection scheme enables
amplified detection of the interaction parameter. In the
weak interaction regime, the amplification factor corre-
sponds to the so-called weak value, and thus this metro-
logical protocol is known as weak-value amplification
(WVA) [1–3]. WVA has been actively deployed in
precision metrology to amplify tiny physical effects, such
as the optical spin Hall effect [4], an ultrasmall phase
shift [5,6], and the nonlinear effect due to a weak beam of
light [7–9].
WVA provides enhanced sensitivity over conventional

measurements (in the sense that small signals are physically
amplified), but the enhancement does not necessarily result
in a higher signal-to-noise ratio due to the reduced
detection probability by postselection, which in turn causes
a greater statistical error [10–13]. Despite this trade-off,
WVA-based metrology has attracted a lot of attention as it
offers meaningful robustness against certain types of noise,
e.g., temporally correlated noises [7,14], detector jitter [15–
17], and detector saturation [18,19]. In addition, there are
proposals to achieve the Heisenberg-limited precision
scaling in WVA-based metrology using quantum resources
such as squeezing [20] and entanglement [21,22]. Recently,
the entanglement-assisted WVA has been demonstrated
in photonic systems [23,24], but the practical use is limited
by the difficulty in preparing macroscopic entangled

resources. Precision metrology therefore calls for a more
practical Heisenberg-limited WVA scheme that relies on
other strategies [25,26].
Here, we demonstrate a novel WVA scheme based on

iterative interactions, achieving the Heisenberg-limit with-
out resorting to entanglement. N iterative interactions
enhance the postselection probability by N2 while keeping
the amplification factor unchanged. In a proof-of-principle
experiment, we estimate a path-dependent polarization
change using our WVA scheme, showing a good agreement
with the Heisenberg-limited precision scaling.
Theory.—We first briefly review a typical WVA-based

metrology depicted in Fig. 1(a). Given the initial system
state as jψis and the initial meter state as j þ xim, the
weak interaction of Û ¼ eiγÂ⊗σ̂z changes the system-meter
state to

Ûjψisj þ xim ≈ jψisj þ xim þ iγÂjψisj − xim; ð1Þ

where Â is the system observable, σ̂z is the Pauli-z operator,
and j � xim are the eigenstates of the Pauli-x operator.
Assuming the initial states and the system observable are
known, the interaction parameter γ is estimated from the
change of the meter state. Moreover, the state change can be
significantly amplified by projecting the system onto jϕis
and postselecting the outcome,

shϕjÛjψisjþxim≈ shϕjψisðjþximþ iγhÂiwj−ximÞ: ð2Þ

The postselection probability is P ≈ jshϕjψisj2, and the
amplification factor corresponds to the weak value [1],
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hÂiw ¼ shϕjÂjψis
shϕjψis

: ð3Þ

The weak value can be outside the eigenvalue spectrum of
Â and is generically a complex number. These intriguing
features have been extensively studied in the context of
amplified detection [4–9] and, more recently, in the context
of quantum information science, e.g., quantum tomography
[27,28], quantum foundation [29–33], and decoherence
management [34].
When repeating N independent WVA measurements of

the meter state in Eq. (2), the minimum achievable mean
squared error of an unbiased estimator γ with frequentist
inference is given by the quantum Cramér-Rao bound
[35,36],

ΔγðNÞ
ind ≥

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NPIðγÞp ; ð4Þ

where P is the postselection probability and IðγÞ ≈
4jhÂiwj2 is the quantum Fisher information contained in
the meter state under the weak interaction condition of
jγj ≪ j1=hÂiwj, see Supplemental Material [37] for the
details. The result in Eq. (4) shows that the measurement

uncertainty of a typical WVA-based metrology scales with
1=

ffiffiffiffi
N

p
according to the standard quantum limit [38]. To

achieve a large amplification factor in Eq. (3) and large
quantum Fisher information, the postselection state jϕis
has to be set to reduce a postselection probability
P ≈ jshϕjψisj2. Considering the uncertainty bound in
Eq. (4), the perceived enhancement from the amplified
detection is, therefore, inevitably compromised by the
small detection probability. However, note again that the
amplified detection enables us to suppress certain types of
noise [7,14–19].
We can leverage an entangled system to overcome the

standard quantum limit in Eq. (4) [21–24]. The entangle-
ment-assisted WVA scheme is depicted in Fig. 1(b). Each
particle of the N-partite entangled system in jΨis interacts
consecutively with the meter in j þ xim, and then the
system is postselected by jΦis for amplified detection of
the interaction parameter γ. The interaction is written as

Û⊗N ¼ eiγ
P

N
k¼1

Âk⊗σ̂z , where Âk ¼ Î ⊗ … ⊗ Â ⊗ … ⊗ Î
denotes the observable Â for the kth system particle.
According to the original proposal [21], the entangled
system is initially prepared as a maximally entangled state
and is postselected as follows:

jΨis ¼
1ffiffiffi
2

p ðjλmaxi⊗N
s þ jλmini⊗N

s Þ;

jΦis ≈
1ffiffiffi

2
p jhÂiwj

½ðhÂi�w − NλminÞjλmaxi⊗N
s

− ðhÂi�w − NλmaxÞjλmini⊗N
s �: ð5Þ

Here, jλmaxðminÞis is the eigenstate of Â and has the
maximum (minimum) eigenvalue of λmaxðminÞ. Then, under
the assumption of a large amplification factor and a small
interaction strength,

jNλmaxðminÞj ≪ jhÂiwj ≪ jγj−1; ð6Þ

we can estimate the interaction parameter γ with the
enhanced postselection probability,

PðNÞ
ent ≈ jshΦjΨisj2 ≈

N2ðλmax − λminÞ2
4jhÂiwj2

; ð7Þ

while keeping the amplification factor in the meter state the
same with Eq. (2),

shΦjÛ⊗N jΨisj þ xim ≈ shΦjΨisðj þ xim þ iγhÂiwj − ximÞ:
ð8Þ

For a fair comparison, the number of interactions in the
entanglement-assisted WVA in Fig. 1(b) needs to be the
same with N independent measurements of the typical
WVA in Fig. 1(a). To do so, we estimate the quantum

(a)

(b)

(c)

FIG. 1. Three weak-value amplification (WVA) scenarios for
estimating an interaction strength γ with a total of N interactions
between a system and a meter. (a) Typical WVA: the meter state is
measured independently N times after a single interaction with a
system particle and the postselection of the system. (b) Entangle-
ment-assisted WVA: the meter state is measured once after N
consecutive interactions with each particle of an N-partite
entangled system and the postselection of the system.
(c) WVA with iterative interactions: the meter state is measured
once after N iterative interactions with a system particle and the
postselection of the system.
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Cramér-Rao bound for a single entanglement-assisted
WVA measurement to be

ΔγðNÞ
ent ≥

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðNÞ
ent IðγÞ

q ¼ 1

Njλmax − λminj
; ð9Þ

where the meter state in Eq. (8) gives IðγÞ ≈ 4jhÂiwj2. The
uncertainty bound clearly shows that the use of anN-partite
entangled system enables the Heisenberg-limited precision
scaling, achieving the precision improvement of

ffiffiffiffi
N

p
over

the case of N independent measurements in Eq. (4).
We now present a WVA scheme which can achieve the

Heisenberg limit without using entangled resources. As
shown in Fig. 1(c), we consider N iterative interactions,
ÛN ¼ eiNγÂ⊗σ̂z , between the system and the meter prior to
the detection:

ÛN jψisj þ xim ≈ jψisj þ xim þ iγNÂjψisj − xim: ð10Þ

Interestingly, if the initial and postselection system states
are set to have the same relative amplitudes as those in
Eq. (5),

jψis ¼
1ffiffiffi
2

p ðjλmaxis þ jλminisÞ;

jϕis ≈
1ffiffiffi

2
p jhÂiwj

½ðhÂi�w − NλminÞjλmaxis

− ðhÂi�w − NλmaxÞjλminis�; ð11Þ

under the condition of Eq. (6), the amplification factor is
fixed to hÂiw independently of N,

shϕjÛN jψisj þ xim ≈ shϕjψisðj þ xim þ iγhÂiwj − ximÞ;
ð12Þ

and the system postselection probability becomes identical
to Eq. (7),

PðNÞ
iter ≈ jshϕjψisj2 ≈

N2ðλmax − λminÞ2
4jhÂiwj2

: ð13Þ

Consequently, the quantum Cramér-Rao bound for a single
WVA measurement with N iterative interactions also
follows the Heisenberg-limited scaling,

ΔγðNÞ
iter ≥

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðNÞ
iter IðγÞ

q ¼ 1

Njλmax − λminj
: ð14Þ

This result indicates that the perceived advantages of the
entanglement-assisted WVA [21–24] are in fact due to
iterative local interactions between each particle of the
entangled system and the meter, rather than coming from

the entanglement itself. The detailed derivation of the WVA
scheme based on iterative interactions is presented in
Supplemental Material [37].
Experiment.—To demonstrate our Heisenberg-limited

WVA scheme, we experimentally estimate a small path-
dependent polarization change of a single photon. The
experimental schematic is depicted in Fig. 2. For the single-
photon source, we first generate an entangled signal-idler
photon pair via ultrafast-pumped spontaneous parametric
down-conversion (SPDC) with an 1-mm type-II beamlike
beta barium borate (BBO) crystal. The presence of a single-
photon state for the signal photon is heralded by detecting
the idler photon. We employ the polarization mode and the
path mode of the heralded SPDC photon as the system and
the meter, respectively. The system state can be written as a
linear combination of the right circular j þ yis and the left
circular j − yis polarization states, and the upper and lower
path states are denoted by j þ zim and j − zim, respectively.
Here, j � ki have the eigenvalues of �1 for the Pauli-k
operator σ̂k. To initialize the system-meter state to

jψisj þ xim ¼ 1ffiffiffi
2

p ðj þ yis þ j − yisÞj þ xim; ð15Þ

we prepare a horizontally polarized single photon in the
path superposition, j þ xim ¼ ðj þ zim þ j − zimÞ=

ffiffiffi
2

p
, by

using a beam displacer (BD) and a half-wave plate (HWP).
As shown in Fig. 2, the weak interaction that causes a

small path-dependent polarization change of γ is imple-
mented by rotating the angles of HWPs conditioned on the

FIG. 2. Experimental schematic to estimate a path-dependent
polarization change via WVA based on iterative interactions. The
polarization mode and the path mode of a single photon are
employed as the system and the meter, respectively, and they are
initialized using the first beam displacer (BD) and half-wave plate
(HWP). The path-dependent polarization change of γ is imple-
mented by rotating the next HWP in each path in opposite
directions, and the N iterative interactions are introduced by
setting the HWP angles at Nγ=2 and −Nγ=2, respectively. The
system (polarization mode) is then projected onto jϕis by
postselecting the photon coming from the lower path of the
second BD, and the postselection state is determined by the HWP
angle ϕ. The operation of the second BD converts the path mode
state into the polarization mode state, so the meter readout is
carried out using the polarizing beam splitter (PBS).
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paths. The N iterative interactions are introduced by setting
the HWP angles atNγ=2 for j þ zim and−Nγ=2 for j − zim.
With an additional HWP set at 0°, the conditional polari-
zation operations are given as e�iNγσ̂y , and thus the iterative
weak interactions are written as

ÛN ¼ eiNγσ̂y ⊗ mj þ zihþzjm þ e−iγNσ̂y ⊗ mj − zih−zjm
¼ eiNγσ̂y⊗σ̂z : ð16Þ

For the amplified detection of γ, we project the system
(the polarization mode) onto

jϕis ¼
1ffiffiffi
2

p ðj þ yis þ e4iϕj − yisÞ; ð17Þ

using the two HWPs at ϕ and 45° and the second BD. Then,
the meter (the path mode) state is found to be

shϕjÛN jψisj þ xim ≈ shϕjψisðj þ xim þ iγhNσ̂yiwj − ximÞ;
ð18Þ

where the weak value of hNσ̂yiw ¼ shϕjNσ̂yjψis=shϕjψis
can be large by choosing ϕ so that shϕjψis ≈ 0 at the limit
of jγj ≪ j1=hNσ̂yiwj. The interaction parameter γ in the
meter state can be obtained from the Pauli-z expectation of
the meter state:

hσ̂zim ≈ 2γIm½hNσ̂yiw�: ð19Þ

This shows that, in the meter readout, the interaction
parameter γ is amplified by the imaginary weak value
Im½hNσ̂yiw�. As the operation of the second BD in Fig. 2
converts the path mode state into the polarization mode
state, the meter readout is carried out using a polarizing
beam splitter and is estimated from hσ̂zim ¼ ðn1 − n2Þ=
ðn1 þ n2Þ, where n1 and n2 are the photon counts detected
at D1 and D2, respectively.
Experimental results.—First, by varying the postselec-

tion angle ϕ in Eq. (17), we study the trade-off relation
between the meter expectation of hσ̂zim and the detection

probability of PðNÞ
iter with γ ¼ 1° at N ¼ 1 and 4. Figure 3

shows that the meter expectation is more amplified as the
detection probability decreases. In addition, as expected
from Eq. (19), we observe that the WVA with N ¼ 4
iterative interactions provides nearly 4 times greater meter
expectation values hσ̂zim compared to the WVAwithN ¼ 1

while keeping the detection probability PðNÞ
iter almost inde-

pendent of the number of interactions. The amplification
factor is not exactly 4 times greater as the approximation
condition, jγj ≪ j1=hNσ̂yiwj, does not satisfy well with a
large amplification factor.
Next, we measure the enhanced detection probabilities

from N ¼ 1 to 4 with a fixed amplification factor jhNσ̂yiwj.

For the purpose of this demonstration, we set the ampli-
fication factor to 11.5 by varying the postselection state
jϕis in Eq. (17) according to Eq. (11) at each N. The
experimental results in Fig. 4 show almost quadratic

enhancement in the detection probability PðNÞ
iter with

increased N. Given the same amplification factor in the
meter state, as the minimum achievable uncertainty bound
in Eq. (14) is inversely proportional to the square root of the

detection probability PðNÞ
iter , the quadratic enhancement of

the detection probability results in the Heisenberg-limited

precision scaling for ΔγðNÞ
iter by reducing statistical errors.

Since the quadratic scaling of the detection probability
is achieved under the condition in Eq. (6),
N ≪ jhNσ̂yiwj ¼ 11.5, the experimental data in Fig. 4 have
slight discrepancy with the Heisenberg-limited scaling as N
increases. However, this discrepancy can be eliminated by
increasing the amplification factor. To demonstrate the
Heisenberg-limited scaling up to a largerN, we numerically
estimate the detection probability with larger amplification
factors, and the results are presented in Supplemental
Material [37].
Discussion.—We have experimentally demonstrated that

the Heisenberg-limited precision scaling can be achieved
using a novel WVA scheme based on iterative interactions.

(a)

(b)

FIG. 3. The amplified meter readouts hσ̂zim ≈ 2γIm½hNσ̂yiw�
and the detection probabilities PðNÞ

iter for the WVA measurements
of γ ¼ 1° with (a) a single interaction and (b) four iterative
interactions. As the postselection state approaches the completely
orthogonal state of the initial system state, ϕ ¼ 45°, the ampli-
fication effect on the meter expectation value hσ̂zim is enhanced
while the detection probability decreases. The solid lines show
the exact theoretical curves, and the error bars represent one
standard deviation of Poissonian counting statistics.
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This result indicates that the perceived advantages of the
entanglement-assisted WVA [21–24] are in fact due to
iterative local interactions between each particle of an
entangled system and a meter, rather than coming from the
entanglement itself. Although quantum entanglement ena-
bles simultaneous interactions between all system particles
and a meter, the fast interaction time is usually compro-
mised by large decoherence rate which increases linearly
with the size of the system [39]. Therefore, the entangle-
ment-assisted WVA does not offer a meaningful advantage
over our scheme under decoherence [40,41]. Rather, since a
large-scale entangled state is difficult to produce with high
fidelity, our iterative interaction approach would provide
practical applications in achieving the Heisenberg-limited
precision scaling for weak-value amplification.
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