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Abstract We demonstrate the distance sensitivity of thermal light second-order interference beyond spatial coherence. This kind of
interference, emerging from the measurement of the correlation between intensity fluctuations on two detectors, is sensitive to the
distances separating a remote mask from the source and the detector, even when such information cannot be retrieved by first-order
intensity measurements. We show how the sensitivity to such distances is intimately connected to the degree of correlation of the
measured interference pattern in different experimental scenarios and independently of the spectral properties of light. Remarkably,
in specific configurations, sensitivity to the distances of remote objects can be preserved even in the presence of turbulence. Unlike in
previous schemes, such a distance sensitivity is reflected in the fundamental emergence of new critical parameters which benchmark
the degree of second-order correlation, describing the counterintuitive emergence of spatial second-order interference not only in
the absence of (first-order) coherence at both detectors but also when first-order interference is observed at one of the two detectors.

1 Introduction

Since the discovery of the Hanbury-Brown and Twiss (HBT) effect in the 1950s [1,2], the measurement of correlations of light
intensities, leading to counterintuitive higher-order interference effects in the absence of field coherence [3,4], has triggered the
development of quantum optics [5]. In particular, the correlation measurement at the heart of HBT effect has been the working
tool of all entanglement-based protocols, from studies of quantum foundations [6–14] to quantum-enhanced technologies such as
quantum imaging and lithography [15–25], information [26–35], and teleportation [36]. Interestingly, starting from the early 2000s,
many of these effects have been replicated by exploiting the correlations of chaotic light [37–46]. Recently, novel schemes where
second-order interference occurs effectively between light propagating through two pairs of paths that are mutually incoherent at
first order have been proposed [47–49] and experimentally realized [50–53] in both the temporal and spatial domain.

In this article, we shed new light on the physics of second-order interference with thermal light and show its sensitivity to distances
in different experimental scenarios where spatial coherence is absent at either one or both the detectors and turbulence may occur.
Compared with the aforementioned previous works, in which second-order correlations were exploited only for transverse distance
measurements, this work is focused on the interplay between transverse coherence on the object planes and longitudinal distances,
arbitrarily different from each other, of the detected objects. We will demonstrate that second-order coherence (hence, the possibility
to observe non-trivial second-order interference) is crucially related to physical parameters, including a newly-defined thermal light
second-order correlation length, that involve specific combinations of distances and transverse coherence lengths. These results not
only provide a deeper understanding of second-order correlation of thermal light beyond (first-order) spatial coherence, but also
enable us to be sensitive to arbitrary distances between an incoherent source and an object and between an object and a detector.
This is the case even when first-order interference cannot provide information on such parameters.

Our results also lay the foundations of novel protocols for distance sensing, where no frequency information about the employed
thermal light is required. This can integrate and improve state-of-the-art applications, such as those based on pulsed light (e.g.,
time-of-flight cameras [54]) or first-order interference (e.g., coherent LIDAR [55]), tasks in metrology and information processing
[28,37,39,40,42,56], as well as optical algorithms [57–61] and quantum imaging [62–64] . Interestingly, we show the ranging
sensitivity of our second-order interference technique by employing simple double slit masks. In the more general experimental
scenario, pictured in Fig. 1a, after beam splitting a thermal beam as in a standard HBT experiment, light propagates at the two output

a e-mail: vincenzo.tamma@port.ac.uk (corresponding author)

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjp/s13360-022-02857-7&domain=pdf
http://orcid.org/0000-0002-7407-063X
mailto:vincenzo.tamma@port.ac.uk


  647 Page 2 of 10 Eur. Phys. J. Plus         (2022) 137:647 

Fig. 1 Panel a Distance sensing interferometric scheme to measure either the distance fT or zT , when both the reference distances fC and zC are
controlled; the source emits narrow-bandwidth thermal light; the double-slit masks are followed by two spatially resolving detectors, enabling spatial
correlation measurements. Panel b Case of identical distances between source and masks (zT = zC = z), ideal to measure only the distance fT . Panel c
configuration with a single mask and the beam splitter placed after the mask, equivalent in the outcome of the correlation measurements to the case (b) when
the two masks are identical. Panel d a possible realization of the interferometric scheme in the case of a mask with reflective “slits,” which additionally
features a semi-transparent mirror placed between the beam splitter and the mask in path T

ports through two double-slit masks (usually a remote “target” mask T and a “controlled” reference mask C in the laboratory)
before measurements of spatial correlation in the intensity fluctuations are performed at the two detectors. We demonstrate that
the measured effective second-order interference between the two pairs of paths through the upper and lower slits depends in a
non-trivial way on both the distances (zC , zT ) from the source to the two masks and to the distances ( fC , fT ) from each mask to
the corresponding detector. By properly tuning the degree of second-order correlations through the values of the slit separations and
the distances zC and fC , related to controlled mask, one can enhance the sensitivity of correlation measurements to the distances
zT and fT of the remote target mask, even when first-order interference provides no information on one of those distances or both.

We also show that when zT = zC = z (Fig. 1b), the same second-order interference pattern can be retrieved by the single-mask
experiment in Fig. 1c, characterized by the robustness of the second-order correlated interference pattern with respect to turbulence.
Finally, we remark that the described protocol can be implemented also in the case where one or both masks are reflective objects:
Fig. 1d depicts, for example, the case where the target object is a reflective mask and second-order interference can be observed by
introducing a semi-transparent mirror in the target path.

2 Correlation of intensity fluctuations

We shall determine the correlations of intensity fluctuations for the system in Fig. 1a, in which the path T , where input thermal
light is transmitted by a beam splitter, and the controlled path C , where light is reflected, go through two independent double-slit
masks, respectively, before being detected by detectors DT and DC in the far field. We will consider the case in which the source
emits thermal and quasi-monochromatic light, of central frequency ω = ck, wavelength λ = 2π/k, bandwidth �ω = τ−1

c , with
τc the coherence time, and the two slits parallel to the vertical axis. Up to an irrelevant constant, the correlation between intensity
fluctuations at the coordinate xC on the detector DC and xT on DT reads

�(xC , xT ) = 〈�IC (xC )�IT (xT )〉 =
∣
∣
∣
∣

∫

dxs S(xs)gT (xT , xs)g
∗
C (xC , xs)

∣
∣
∣
∣

2

, (1)

where S is the intensity profile of the source and gC,T are the paraxial transfer functions on each path, which read

gJ (xJ , xs) = K(z J )
∫

dxoe
ik
2

[

(xJ −xo)2

f J
+ (xo−xs )2

z J

]

AJ (xo) (2)

where J = C, T , AJ is the transmission function of the mask placed along each path, xo is the coordinate of the mask plane, and
K is a function independent of the transverse coordinates, including the effects of field attenuation with increasing distance (see
Appendix 1). The expectation value on the thermal state appearing in Eq. (1) is practically estimated by averaging over the products
of intensities measured in correspondence of a set of discrete observation times. Here, we shall consider double-slits masks of
negligible thickness aJ , with J = C, T , centered on the optical axis and characterized by the slit distances dC and dT , respectively;
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their transmission functions will be approximated as

AJ (xo) = aJ

[

δ

(

xo + dJ
2

)

+ δ

(

xo − dJ
2

)]

, (3)

with δ(x) the one-dimensional Dirac delta distribution. The finite values of slit width induce low-frequency modulations of light
detected in the far field of the masks, which can be safely neglected provided kaJσ/z J � 1 (with σ the source profile width) and
kaJ xJ / f J � π [65].

Under the aforementioned assumptions, the correlation of intensity fluctuations in Eq. (1) can be expressed as a finite Fourier
series (see Appendix 1 for derivation and full expressions of the Fourier coefficients):

� (xC , xT ) = 1 + Re

[
∑

J=C,T

F1J (zT ) exp

(

−i
kdJ xJ
f J

)

+
∑

s=±
F (s)

2 (zT ) exp

[

−i

(

s
kdT xT

fT
+ kdC xC

fC

)]]

, (4)

apart from an overall constant factor given by the zero-spatial-frequency component. Henceforth, we will assume the case in which
the two masks are centered on the respective optical axes, and a source with a Gaussian average intensity profile

S(xs) = S0 exp

(

− x2
s

2σ 2

)

, (5)

with the coherence length assuming the values

σT = zT
kσ

, σC = zC
kσ

, (6)

at the two mask planes at distances zT and zC , respectively. In this case, the Fourier coefficients in Eq. (4)

F1C (zT ) = F1T (zT ) = cos(αβ/2)

cosh(α/2)
≡ F1(zT ), (7)

F (+)
2 (zT ) = 1 − F (−)

2 (zT ) = 1

1 + exp(α)
, (8)

(see Appendix 1 for derivation) depend on the product and on the absolute difference of the coherence areas in Eq. (6) through two
dimensionless parameters

α = dCdT
�2
c

, β = σ
|σT − σC |

σT σC
= kσ 2 |zT − zC |

zT zC
, (9)

with the first one defined by the effective second-order correlation length

�c =
√

(1 + β2)σCσT (10)

at the transverse planes at distances zC and zT from the source. In particular, for zT = zC = z, such second-order correlation
length reduces to the first-order coherence length: �c = z/kσ . Notice also that the Fourier coefficients in the correlation function
� in Eq. (4) depend on the slit distances only through their product, since the masks are both centered transverse with respect to
the optical axis. Interestingly, the terms in Eq. (4) manifesting a correlation between the two masks, particularly between slits on
opposite sides of the optical axis (F (+)

2 ) and between slits on the same side (F (−)
2 ), fully depend on the ratio α between such a

product and the squared second-order correlation length �c. Incidentally, notice that the paraxial approximation sets the limit of
validity of the above results to the case in which the Fraunhofer conditions kd4

J /(128 min{z3
J , f 3

J }) � π hold for both J = C, T
[65]; if these conditions are violated, modulations in space of both the amplitude and the period of the interference patterns will
occur, without significant changes in the physical interpretation.

Remarkably, the measurement of the spatial frequencies in the correlation function (4) allows to infer the distance of the length
fT of the target path from the detector DT to the corresponding mask. Furthermore, an analysis of the Fourier coefficients allows
us to extrapolate the value of the distance zT from the source to the target mask. In Fig. 2, we show the behavior of the correlation
function in the (xC , xT ) plane with varying zT . We emphasize that the intensity at the detector DT

I (xT ) ∝ 1 + exp

(

− d2
T

2σ 2
T

)

cos

(
kdT xT

fT

)

, (11)

is highly sensitive to fT only if dT � σT , and to zT (through the coherence length σT ) only if dT ∼ σT .

123



  647 Page 4 of 10 Eur. Phys. J. Plus         (2022) 137:647 

(a) α = 32.30, β = 0 (b) α = 4.20, β = 0.76

(c) α = 1.67, β = 0.84 (d) α = 0.31, β = 0.90

Fig. 2 Density plots of the correlation function �(xC , xT ) in Eq. (4), measured at different values of the target distance zT at the output of the setup in
Fig. 1a, with color scale ranges from blue (� = 0) to white (� equal to its maximum). The values of the critical parameters α and β in Eq. (9) are reported
in captions. The case in panel a is obtained for zT = zC = z, as in Fig. 1b. The second-order correlated interference pattern allows to estimate easily the
length of a remote path from the detector DT to the corresponding mask, as discussed in Case 2. In panel b, a case is shown, with zt/zc = 5, in which the
correlated interference pattern has still almost full visibility, despite light transmitted from the two slits of the target mask is coherent (σT /dT 	 1). The
result in panel c is obtained for zT /zC = 11.43 and corresponds to a condition discussed in Case 3, in which the Fourier coefficients are more sensitive to
the measure of the unknown distance between one mask and the source. In panel d, the case of a factorized interference pattern is shown, as discussed in
Case 1. The constant parameters are λ = 980 nm, dC = 0.70 mm, dT = 0.55 mm, σ = 0.1 mm, zC = 70 mm, fT = fC = 200 mm

3 Distance sensitivity in different parameter regimes

In the following, we describe how information on the position and the slit distance of the target can be encoded in the Fourier
coefficients that determine the correlation function as in Eq. (4). The effectiveness of this encoding depend on the parameter range,
so different regimes will be separately discussed.
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3.1 Case 1. The factorized limit

We first describe the regime in which the correlation function �(xC , xT ) factorizes with respect to its two detector position variables.
By using the expressions (7)–(8) of the Fourier coefficients, the correlation function in Eq. (4) factorizes as

�(xC , xT ) = �f (xC , xT ) = 4 cos2
(
kdT xT

2 fT

)

cos2
(
kdC xC

2 fC

)

(12)

if and only if F2
1 = 2F (+)

2 = 2F (−)
2 , approximately occurring when α � 1 and αβ � 1, as defined in Eq. (9) (the latter condition

is automatically satisfied for zT = zC , where β = 0). The approximate factorization entails, as a necessary condition, a bound on
the product of transverse slit distances:

dCdT � �2
c . (13)

Interestingly, to satisfy the factorization conditions and hence to observe a pattern approximated by (12), as in Fig. 2d, it is not
necessary to be in the regime where first-order interference can be observed at both detectors, namely dC � σC and dT � σT .
Unfortunately, in such a factorized limit, the second-order correlation has a small sensitivity to variations in zT , depending on it
only through its first-order contribution in α,

�(xC , xT ) − �f (xC , xT ) 	 α

2
sin

(
kdT xT

fT

)

sin

(
kdC xC

fC

)

. (14)

arising from the only non-vanishing first-order corrections to the Fourier coefficients, namely F±
2 = 1/2 ∓ α/4. .

3.2 Case 2. The limit of second-order correlated interference pattern: higher sensitivity to fT

Considering the form of the Fourier coefficients in Eqs. (7)–(8), it is evident that when α � 1, namely

dCdT � �2
c, (15)

a limit is approached in which F1 = F (+)
2 = 0 and F (−)

2 = 1, representing effective interference between pairs of paths associated
with corresponding slits in the two masks. In this case, the intensity correlation function in Eq. (4) takes the form of a correlated
interference pattern

�(xC , xT ) = �cp(xC , xT ) = 2 cos2
[
k

2

(
dT xT
fT

− dC xC
fC

)]

, (16)

The first-order corrections in e−α/2 where the orientation of the interference fringes is fixed by a specific linear combination of
the two detector variables (see Fig. 2a). This condition is opposed to the factorized case in Eq. (12) and is the most convenient in
order to detect the distance fT . It is sufficient to characterize the oscillation frequency along any of the directions xC = μxT + ν,
with μ �= (dT /dC )( fC/ fT ), and ν arbitrary, in order to determine fT . In particular, the frequency of the second-order interference
pattern in the case xC = −(dT /dC )( fC/ fT )xT + ν is twice the frequency of the pattern generated at first order by coherent light
impinging the double slit mask. Notice that both the directions of constant � in the (xC , xT ) plane and the directions of maximal
frequency are independent of the wavelength of detected light. Therefore one can also infer the distance fT , for a known reference
distance fC , without precise knowledge of the light frequency, by determining one of these two directions or both. Knowledge of
the correlation function, determined by the parameters

F1 = 2e− α
2 cos(αβ)[1 + O(e−α)], (17)

F (+)
2 = 1 − F (−)

2 = O(e−α) (18)

enables one to infer (though not unambiguously, see following discussion for Case 3) the value of zT from the amplitude of additional
uncorrelated oscillations

�(xC , xT ) − �cp(xC , xT ) 	 2e− α
2 cos(αβ)

∑

J=C,T

cos
kdJ xJ
f J

. (19)

However, such oscillations are exponentially suppressed with high decay value α � 1 [however, notice by comparing Eqs. (17)–(18)
that F1 is more sensitive than F (±)

2 to changes in zT ]. Therefore, they are not so sensitive to variations in zT , as reflected for example

in the presence of plateaus that can occur in both F1 and F (−)
2 , especially in a neighborhood of zT = zC (see Fig. 3a). Interestingly,

also in this case, the occurrence of full second-order correlations in Eq. (16) for α � 1 is not necessarily determined by the absence
of first-order interference at both detectors. Indeed, it is possible that the slits of one mask fall within the coherence length on their
plane, as shown in Fig. 2b. Remarkably, in the case of a single mask (dC = dT = d , zC = zT = z), represented in Fig. 1c, the
condition in Eq. (15) for the observation of a fully correlated pattern ensures robustness to turbulence surrounding the mask, since
the correlation function becomes insensitive to any local (random) phase of the field at each slit, as proved in Appendix 5 (see also
[53]).
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Fig. 3 Plots of the Fourier
coefficients F1 (solid blue line)

and F(−)
2 (dashed red line),

defined in Eqs. (7)–(8), as
functions of the distance zT
between source and target mask
T , at fixed zC = 120 mm,
λ = 980 nm dT = 0.08 mm,
dC = 0.8 mm, for two different
values of the source width σ . The
plateau around zC = zT in panel
a corresponds to a range in which
α � 1, producing correlated
interference patterns analogous to
the one in Fig. 2a. Notice that, in
the case zT = zC of panel b,
α 	 5 is not small, providing still
a non-factorized pattern despite
the two slits of mask C fall within
the coherence area at a distance
zC
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3.3 Case 3. The intermediate range: higher sensitivity to zT

We have shown that the extremal situations considered before are not ideal in measuring the distance zT . We demonstrate now how
this drawback can be overcome by considering instead intermediate settings. For example, for β � α−1 � 1, F (±)

2 	 1/2 ∓ α/4,
as in the factorized case, while F1 	 cos(αβ/2) can now provide an unambiguous estimation of zT through the variation of αβ in a
given interval of length π . Furthermore, in the case in which α ∼ 1 and β � 1, namely, from Eq. (9),

dCdT ∼ �2
c, kσ 2 |zT − zC | � zC zT , (20)

both the independent Fourier coefficients in Eqs. (7)–(8) are sensitive to variations in the distance zT . Such a condition can be
observed in the plot of Fig. 2c. The measure of F1 and F (+)

2 therefore enables a combined estimate of zT . As shown in Fig. 3, the

coefficient F1 is typically more sensitive than F2 to small variations of zT , although strongly non-monotonous, as opposed to F (±)
2 ,

with monotonicity intervals typically centered around the cosine zeros αβ = (2n + 1)π , with n ∈ N. An effective strategy for the
estimation of a completely unknown zT can include a two-step process, involving 1) a rougher estimate of the range of distance
through the parameter F2, less sensitive but characterized by only two monotonicity ranges, and 2) a more precise estimation through
F1.

4 Conclusions and outlook

We described the physics of second-order interference between a pair of double-slit masks, placed at arbitrary distances from a
common thermal source and from the detectors behind. We also demonstrate its application to sensing the distances of a remote
object from the source and from the detector in different ad hoc experimental settings; in particular, in the regime of second-order
correlated interference, it provides a way to measure the distance between object and detector regardless of the spectral properties of
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the light. Such a technique can be also implemented with a single mask Fig. 1c, if one is mainly interested in measuring the distance
between the mask and one of the detectors.

Our analysis sheds new light on the understanding of the emergence of second-order coherence with thermal light and its
connection to the degree of correlation of the measured second-order interference pattern. Remarkably, we have shown that the
absence (presence) of second-order interference is not necessarily connected with the presence (absence) of first-order interference
at both detectors separately. On the other hand, such second-order correlations emerge from a second-order coherence which does
not depend on the coherence lengths measured at the two masks independently but on a suitable combination of them in two new
critical parameters, the second-order correlation length �c and the non-dimensional parameter β in Eqs. (9)–(10).

These findings also provide the basis for a convenient protocol to measure the distance of reflective objects, placed either on the
optical path between source and mask, or on the path between mask and detector, as shown in Fig. 1d. Such a protocol, based on the
control of second-order coherence through the parameter �c, provides the possibility to apply interference-based distance detection
protocols, such as coherent LIDAR, even when first-order coherence cannot be exploited, provided the parameters zC and fC are
known. A generalization of this analysis to masks with arbitrary transverse position with respect to the optical axis, as well as more
complex spatial structures, will be addressed in future works. Our results also pave the way to interesting future research devoted
to an accurate evaluation of the ultimate precision bounds of the described measurement scheme [66], and the least possible error
given the state of the field, quantified by the Quantum Fisher information [67].
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Appendix A: General form of the correlation function

The basic elements to evaluate the correlation between intensity fluctuations (1) is the computation of the optical paraxial transfer
function in Eq. (2), where K(z J ) = −k2/(4π2z J f J ). Under the approximation (3), the paraxial transfer functions read

gJ (xJ , xS) = − ak2

4π2z J f J
exp

(

ik

2

(

x2
J + d2

J /4

f J
+ x2

s + d2
J /4

z J

))

×
∑

q=±
exp

(

− ikdJ
2

q

(
xs
z J

+ xJ
f J

))

, (A1)

with J = C, T . For general distances (zT �= zC ), the correlation function reads

�(xC , xT ) = a2k4

(2π)4zC zT fC fT

×
∣
∣
∣
∣
∣
∣

∑

q,q ′=±
Fqq ′(zC , zT ) exp

[

− ik

2

(

q
xT dT
fT

− q ′ xC xC
fC

)]
∣
∣
∣
∣
∣
∣

2

, (A2)

where

Fqq ′(zC , zT ) = �

(

q
dT
zT

− q ′ dC
zC

)

exp

[

ik

8

(

d2
T

zT
− d2

C

zC

)]

(A3)

with

�(y) =
∫

dxsS(xs) exp

(
ik

2

(
1

zT
− 1

zC

)

x2
s − iky

2
xs

)

, (A4)

coinciding with the Fourier transform of the source intensity profile in the case zT = zC = z.
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In general, the correlation of intensity fluctuations, as a function of the detector coordinates, can be expressed as a finite Fourier
series:

� (xC , xT ) = a2k4

(2π)4zC zT fC fT
B

{

1 + Re

[

F1Ce
−i

kdC xC
fC + F1T e

−i
kdT xT

fT

+
∑

s=±
F (s)

2 e
−i

(

s
kdT xT

fT
+ kdC xC

fC

)]}

, (A5)

with

B =
∑

q,q ′=±
|Fqq ′(zC , zT )|2, (A6)

F1C = 2

B

(F−−(zC , zT )F∗−+(zC , zT ) + F+−(zC , zT )F∗++(zC , zT )
)

, (A7)

F1T = 2

B

(F∗−−(zC , zT )F+−(zC , zT ) + F∗−+(zC , zT )F++(zC , zT )
)

, (A8)

F (+)
2 = 2

B
F∗−+(zC , zT )F+−(zC , zT ), (A9)

F (−)
2 = 2

B
F−−(zC , zT )F∗++(zC , zT ), (A10)

It is worth observing that, while the spatial frequencies are fixed only by the combinations kdT / fT and kdC/ fC , the background B
and the Fourier coefficients depend on all the parameters of the setup, except the mask-to-detector distances. Therefore, determining
these coefficients is the key to estimate one of the longitudinal distances or one of the mask center positions. Notice that, in the main
text, the correlation function has been conveniently redefined dividing by the background B.

In the paper, we consider the case in which the double slits axes coincides with the respective optical axes (XC = XT = 0) and
the source is characterized by a Gaussian intensity profile, of width σ :

S(xs) = S0 exp

(

− x2
s

2σ 2

)

, (A11)

for which

�(y) ∝ exp

⎧

⎪⎪⎨

⎪⎪⎩

− y2

2

[

1
(kσ)2 + σ 2

(
1
zT

− 1
zC

)2
]

[

1 + ikσ 2
(

1

zT
− 1

zC

)]

⎫

⎪⎪⎬

⎪⎪⎭

. (A12)

In this case, the Fourier coefficients read

F1C = F1T = cos(αβ/2)

cosh(α/2)
, F (+)

2 = 1

1 + exp(α)
= 1 − F (−)

2 (A13)

with

α = 1

1 + β2

dC
σC

dT
σT

, β = σ

∣
∣
∣
∣

1

σT
− 1

σC

∣
∣
∣
∣

(A14)

as reported in Eqs. (7)–(8)–(9).

5 Effects of turbulence surrounding the masks

Turbulence around one or both masks is generally detrimental for the correlation measurement. The effect can be modeled by the
replacing AJ (xo), with J = C, T , as defined in Eq. (3), with

AJ (xo) = a

[

eiφ(−)
J δ

(

xo + dJ
2

)

+ eiφ(+)
J δ

(

xo − dJ
2

)]

. (B15)

where φ
(±)
J are four random phases, affecting the field propagating through each slit q = ± to each detector DJ with J = C, T .

These phases are generally not correlated with each other. The effect of the presence of turbulence consists in

Fqq ′(zC , zT ) −→ exp
(

i(φ(q)
T − φ

(q ′)
C )

)

Fqq ′(zC , zT ). (B16)

Therefore, if the four phases φ
(±)
J are not correlated with each other, turbulence in the setup illustrated in Fig. 1a, b of the main text

affects the final result (4), defined by the turbulence-sensitive coefficients (A6)–(A10).
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The situation is different for the setup in Fig. 1c, since there, as the two masks physically coincide,

dC = dT = d, zC = zT = z, φ
(±)
C = φ

(±)
T = φ(±). (B17)

Therefore, the functions F++ and F−− are both insensitive to turbulence, as well as the coefficient F (−)
2 in which they appear. In the

case where full second-order correlation interference occurs, namely when only the turbulence-free coefficient F (−)
2 is non-vanishing,

the correlation function �(xC , xT ) can be considered robust with respect to turbulence effects modeled as in Eq. (B17).
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